Question

In the previous video, I made the assumptions that Ris a ring, S is a subring of R and I is an ideal of R. It turns out that
Let R be a ring, let S be a subring of R, and let be an ideal of R. Note that in the video I showed that (s + 1)/1 = {s + 1
0 0
Add a comment Improve this question Transcribed image text
Answer #1

and & -f2 ES also s is sub subring Sist Sn > s, + (SNI) = $+ (Sna) 9 1968,+2) = $($2+1) Hence proved

Add a comment
Know the answer?
Add Answer to:
In the previous video, I made the assumptions that Ris a ring, S is a subring...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Let R be a ring, let S be a subring of R and let' be an...

    Let R be a ring, let S be a subring of R and let' be an ideal of R. Note that I have proved that (5+1)/1 = {5 +1 | 5 € S) and I defined $:(5+1) ► S(SO ) by the formula: 0/5 + 1)=5+(SNI). In the previous video I showed that was well-defined. Now show that is a ring homomorphism. In other words, show that preserves both ring addition and ring multiplication. Then turn your work into this...

  • INSTRUCTIONS Let S and T be two subrings of ring R. Use the subring criteria to...

    INSTRUCTIONS Let S and T be two subrings of ring R. Use the subring criteria to show their intersection is also a subring of R BMISSION Let R be a ring, let S be a subring of R, and let I be an ideal of R. In the video I showed Aa that if s € S and a € SnI then as € SAI. Complete the proof that snl is an ideal of S * by showing that if...

  • IBMISSION Аа Let R be a ring and let I be an ideal of R. Recall...

    IBMISSION Аа Let R be a ring and let I be an ideal of R. Recall the canonical map T: RR/I given by *(r) = r + I is a ring homomorphism from R to R/I that is onto R/I, but not one-to-one. Let S be a subring of R where I SS. Part 1: Explain why +(S) is a subring of R/I. (Hint: Don't make this difficult. Can you use the corollary in the previous video?) INSTRUCTIONS Make a...

  • QUESTION 4 (a) Let RS be a ring homomorphism with I an ideal of R and...

    QUESTION 4 (a) Let RS be a ring homomorphism with I an ideal of R and J an ideal of S. Define 0(I) = {$(1) I ET) and o-'(J) = {ve R(y) € J} and check as to whether or not (i) °(1) is an ideal of S (6) (ii) o-'() is an ideal of R (6) (Hint: I, J are two-sided ideals and in both cases of (i) and (ii) above, first check the subring conditions) (b) Given a...

  • (i) Show that R is a subring of the polynomial ring Rx. | R{]4 (ii) Let...

    (i) Show that R is a subring of the polynomial ring Rx. | R{]4 (ii) Let k be a fixed positive integer and be the set of all polynomials of degree less than or equal to k. Is R[xk a subring of R[a]? 2r4+3x - 5 when it is (iii) Find the quotient q(x divided by P2(x) of the polynomial P1( and remainder r(x) - 2c + 1 in - (iv) List all the polynomials of degree 3 in Z...

  • (i) Show that R is a subring of the polynomial ring Rx. | R{]4 (ii) Let k be a fixed positive integer and be the set of...

    (i) Show that R is a subring of the polynomial ring Rx. | R{]4 (ii) Let k be a fixed positive integer and be the set of all polynomials of degree less than or equal to k. Is R[xk a subring of R[a]? 2r4+3x - 5 when it is (iii) Find the quotient q(x divided by P2(x) of the polynomial P1( and remainder r(x) - 2c + 1 in - (iv) List all the polynomials of degree 3 in Z...

  • = Let R be a ring (not necessarily commutative) and let I be a two-sided ideal...

    = Let R be a ring (not necessarily commutative) and let I be a two-sided ideal in R. Let 0 : R + R/I denote the natural projection homomorphism, and write ř = º(r) = r +I. (a) Show that the function Ø : Mn(R) + Mn(R/I) M = (mij) Ø(M)= M is a surjective ring homomorphism with ker ý = Mn(I). (b) Use Homework 11, Problem 2, to argue that M2(2Z) is a maximal ideal in M2(Z). (c) Show...

  • Please answer all parts. Thank you! 20. Let R be a commutative ring with identity. We define a multiplicative subset of R to be a subset S such that 1 S and ab S if a, b E S. Define a relation ~ on R...

    Please answer all parts. Thank you! 20. Let R be a commutative ring with identity. We define a multiplicative subset of R to be a subset S such that 1 S and ab S if a, b E S. Define a relation ~ on R × S by (a, s) ~ (a, s') if there exists an s"e S such that s* (s,a-sa,) a. 0. Show that ~ is an equivalence relation on b. Let a/s denote the equivalence class...

  • 3. If the integers mi, i = 1,..., n, are relatively prime in pairs, and a1,...,...

    3. If the integers mi, i = 1,..., n, are relatively prime in pairs, and a1,..., an are arbitrary integers, show that there is an integer a such that a = ai mod mi for all i, and that any two such integers are congruent modulo mi ... mn. 4. If the integers mi, i = 1,..., n, are relatively prime in pairs and m = mi...mn, show that there is a ring isomorphism between Zm and the direct product...

  • 10 Let R be a commutative domain, and let I be a prime ideal of R....

    10 Let R be a commutative domain, and let I be a prime ideal of R. (i) Show that S defined as R I (the complement of I in R) is multiplicatively closed. (ii) By (i), we can construct the ring Ri = S-1R, as in the course. Let D = R/I. Show that the ideal of R1 generated by 1, that is, I R1, is maximal, and RI/I R is isomorphic to the field of fractions of D. (Hint:...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT