Question

We = in (haahi) Qinani Chahu) ME 3210 Thermodynamics I Quiz 8 Summer 2020 Name: 1. R134a in an ideal vapor compression heat p
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given Dasta (R-134a) works on ideal vapour compression Q Heat pump = 35kW quality (2) (dryness fraction = 0.95 P compress 0.6g2 o.glob kJ / kg k If = 0.0164 kJ / kg k Stg 0.9481 kJ / kg k Sg = 0.9 645 kJ /ky k At (14ook Pa) ~ hf = 124. 3 Kolkg hfg =3 S, = sf + a (stg) yat (pz Gokpal S, = 0.0164 +(-95) (0.9481) $9/kg) SA o.glfogs S2 Now from Super heated stable R-134 (9) wWe need find ha hH = 55.710) Again using interpolation between enthalpies 283.10 - 273.90 28 3.10 h 60 -50 160-55.al = 278.935 (b) Compressor work (Win) Win in Chahil In this first we need to find the values h = hf + x (htg at (P = Gok pa hi = 3.9 +0

Add a comment
Know the answer?
Add Answer to:
We = in (haahi) Qinani Chahu) ME 3210 Thermodynamics I Quiz 8 Summer 2020 Name: 1....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • - R134a in an ideal vapor compression heat pump generates 35 kW to heat a room....

    - R134a in an ideal vapor compression heat pump generates 35 kW to heat a room. A mixture of 95% quality enters the compressor at 0.6 bar and saturated liquid exits the condenser at 14 bar. Determine: a) Mass flow rate (kg/hr) b) Compressor power (kJ/min) c) Heat transferred from outside (kW) d) Coefficient of performance

  • R134a in an ideal vapor compression heat pump generates 35 kW to heat a room. A...

    R134a in an ideal vapor compression heat pump generates 35 kW to heat a room. A mixture of 95% quality enters the compressor at 0.6 bar and saturated liquid exits the condenser at 14 bar. Determine: a) Mass flow rate (kg/hr) b) Compressor power (kJ/min) c) Heat transferred from outside (kW) d) Coefficient of performance We aim (haahi) Qinam = ni Chi-hu)

  • 1. R134a in a vapor compression heat pump generates 35 kW of heat to a cold...

    1. R134a in a vapor compression heat pump generates 35 kW of heat to a cold room. Saturated vapor enters the compressor at 1.6 bar and saturated liquid exits the condenser at 8 bar. Assuming 75% isentropic efficiency for the compressor, determine: a) Mass flow rate (kg/s) b) Compressor power (kW) c) Heat transfer from the outside d) Coefficient of performance

  • Problem-3 (200) In a vapor-compression refrigeration cycle, R134a exits the evaporator as saturated vapor at -32°C....

    Problem-3 (200) In a vapor-compression refrigeration cycle, R134a exits the evaporator as saturated vapor at -32°C. The refrigerant enters the condenser at 14 bar and 170°C, and saturated liquid exits at 14 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the mass flow rate is 2.987 kg/s, determine (a) Refrigeration capacity in KW (100) (b) The power input to the compressor,...

  • Thermodynamics. No interpolation needed. Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle....

    Thermodynamics. No interpolation needed. Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle. The evaporator temperature is 8°C and the condenser pressure is 12 bar. Saturated vapor enters the compressor and superheated vapor enters the condenser at 60°C and exits the condenser as saturated liquid. For a refrigeration capacity of 8 tons or 2.816 x104 J/s determine the following: (1) The refrigerant mass flow rate in kg/s; (2) The compressor isentropic efficiency [Hint: Interpolation is required); (3)...

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There are irreversibilities in the compressor. The refrigerant enters the condenser at 16 bar and 160 °C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. Calculate the coefficient of performance, b, and the isentropic compressor efficiency, defined as: 2s Condenser Expansion...

  • An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at -10°C, and saturated liquid leaves the condenser at 28°C. The mass flow rate of refrigerant is 5 kg/min. Determine (a) The compressor power, in kW (b) The refrigerating capacity, in tons. (c) The coefficient of performance. Sketch the system on a T-s diagram with full label. A vapor-compression heat pump with a heating capacity of 500 kJ/min is...

  • An ideal vapor-compression heat pump cycle using R-134a is used to heat a house. The inside...

    An ideal vapor-compression heat pump cycle using R-134a is used to heat a house. The inside temperature is 22 ℃; the outside temperature is 0 ℃ Saturated vapor at 2.2 bar enters the compressor, and saturated liquid leaves the condenser at 3 ba. The mass ow rate is 0.2 kg/s. Detemine: a the power iput to the compressor (in kw) b. the coefficient of performance c. the coefficient of performance if the system were used as a refrigeration cycle d....

  • -Rome can get pretty hot in the mid-summer! Most of the air conditioning units in the Tiber campus use the working flui...

    -Rome can get pretty hot in the mid-summer! Most of the air conditioning units in the Tiber campus use the working fluid R-134a (1,1,1,2-tetrafluoroethane), which is replaces the less environmentally-friendly R-12 of years ago. a) Illustrate the following air conditioning cycle, indicating material, heat, and work flows, as well as given/known temperatures and pressures: R-134a is pressurized to 10.2 bar in an adiabatic, reversible compressor. This high-pressure, hot refrigerant is condensed outside of the building using ambient air to a...

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22°C. The refrigerant enters the condenser at 16 bar and 160°C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. If the refrigerating capacity is 150 kW, determine: (a) the mass flow rate of the refrigerant, in kg/s. (b) the power input to the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT