Question

A damped system consists of a mass (m = 30kg) supported on a spring and a damper in parallel. In an experiment, the period of

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Wd = 20. (b Given data. @ logarith mic decirement 30kg. 8= ln(a) - 0B To = 210 =0.5sec. J1-72. = 11120) 32.99573.2 3. 8=29Z

Add a comment
Know the answer?
Add Answer to:
A damped system consists of a mass (m = 30kg) supported on a spring and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. An underdamped shock absorber for a moon-buggy is to be designed. The system can be...

    6. An underdamped shock absorber for a moon-buggy is to be designed. The system can be considered as simple SDOF system weighing 2500 N as shown in Figure 2 (a) and its damped free vibration response is shown in Figure 2 (b).lf the damped period of vibration is to be 0.8 sec and the amplitude x, is to be reduced to one-third in one half cycle. A/2 a. Draw the free-body and kinetic diagrams for the system. b. Determine the...

  • Answer last four questions 1. A spring-mass-damper system has mass of 150 kg, stiffness of 1500...

    Answer last four questions 1. A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and damping coefficient of 200 kg/s. i) Calculate the undamped natural frequency ii) Calculate the damping ratio iii) Calculate the damped natural frequency iv) Is the system overdamped, underdamped or critically damped? v) Does the solution oscillate? The system above is given an initial velocity of 10 mm/s and an initial displacement of -5 mm. vi) Calculate the form of the response and...

  • 2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m...

    2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m = 10 kg, and damping constant c-150 N-s/m. If the initial displacement is xo-o and the initial velocity is 10 m/s (1) Find the damping ratio. (2) Is the system underdamped or overdamped? Why? (3) Calculate the damped natural frequency (4) Determine the free vibration response of the system.

  • uestion 2 (25% total a) For a lightly-damped SDOF system, let x, and 1,- be the free vibration displacement amplitudes...

    uestion 2 (25% total a) For a lightly-damped SDOF system, let x, and 1,- be the free vibration displacement amplitudes at the initial (reference) moment and m cycles later, respectively. (15%) In the class we concluded that the damping ratio can be estimated using logarithmic decrement as (LI) 27m Does this method still work if instead of displacement amplitudes, we use velocity amplitudes? That is, can be estimated based on 1+m where v, and Vi+ are the free vibration velocity...

  • note:Please write it with your hand font by A4 sheet H Assignment submission -MCE 3 X...

    note:Please write it with your hand font by A4 sheet H Assignment submission -MCE 3 X Bb EMT 4923 Mechanical vibrations x X Cluil ()X nylearn.hct.ac.ae/bbcswebdav/pid-12428971-dt-content-rid-20811679 1/courses/201830 30831/LO2.pdf 6. An underdamped shock absorber for a moon-buggy is to be designed. The system can be considered as simple SDOF system weighing 2500 N as shown in Figure 2 (a) and its damped free vibration response is shown in Figure 2 (b).If the damped period of vibration is to be 0.8 sec...

  • A damped osillator has a mass (m = 2.00kg), a spring (k = 10.0N/m), and a...

    A damped osillator has a mass (m = 2.00kg), a spring (k = 10.0N/m), and a damping coefficient b = 0.102kg/s. undamped angular frequency of the system is 2.24rad/s. If the initial amplitude is 0.250m, How many periods of motion are necessary for the amplitude to be reduced to 3/4 it initial value? is this system underdamped, critically damped, or overdamped

  • We are designing a system that is critically damped. Consider a spring mass damper design where...

    We are designing a system that is critically damped. Consider a spring mass damper design where mass is m=1 kg and the system has to be critically damped. If we want y(t)=te-t as the response, determine the damping constant b and spring constant k. Since it is critically damped, also find the two initial conditions that gives the desired response.

  • A single dof vibration system, modeled by a mass of 50 kg, damping coefficient of 300...

    A single dof vibration system, modeled by a mass of 50 kg, damping coefficient of 300 Ns/m, and spring constant of 5000 N/m, is subjected to periodic displacement excitation u(t) as shown in the figure below. 1. Derive the equation of motion 2. Using Laplace transform, find characteristic equation. 3. Find the undamped and damped natural frequencies. 4. Find the damping ratio. 5. Find the transfer function of output x(t) to the periodic input u(t) using Laplace transform.

  • Question 3 (24 marks) A uniform bar of length L= 1.1m and mass m = 4.2kg...

    Question 3 (24 marks) A uniform bar of length L= 1.1m and mass m = 4.2kg is connected with a spring with stiffness k = 2000N/m and a damper with damping ratio š = 0.3. The bar is rotating about a point that is 10cm from the left end. (1) Calculate the total kinetic energy and total potential energy. (2) Derive the equation of motion using energy based approach. (3) Determine the undamped natural frequency and damped natural frequency of...

  • Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two per...

    Exercises 1. (introduction) Sketch or plot the displacement of the mass in a mass-spring system for at least two periods for the case when Wn-2rad/s, 괴,-1mm, and eto =-v/5mm/s. 2. (introduction) The approximation sin θ ะ θ is reasonable for θ < 10°. If a pendulum of length 0.5m, has an initial position of 0()0, what is the maximum value of the initial angular velocity that can be given to the pendulum without violating this smll angle approximation? 3. (harmonic...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT