Question

We are designing a system that is critically damped. Consider a spring mass damper design where...

We are designing a system that is critically damped. Consider a spring mass damper design where mass is m=1 kg and the system has to be critically damped. If we want y(t)=te-t as the response, determine the damping constant b and spring constant k. Since it is critically damped, also find the two initial conditions that gives the desired response.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

if you like my solution then plz rate positively. In case of error plz let me know. I will correct it ASAP.

Add a comment
Know the answer?
Add Answer to:
We are designing a system that is critically damped. Consider a spring mass damper design where...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m...

    2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m = 10 kg, and damping constant c-150 N-s/m. If the initial displacement is xo-o and the initial velocity is 10 m/s (1) Find the damping ratio. (2) Is the system underdamped or overdamped? Why? (3) Calculate the damped natural frequency (4) Determine the free vibration response of the system.

  • I want matlab code. 585 i1 FIGURE P22.15 22.15 The motion of a damped spring-mass system (Fig. P22.15) is de...

    I want matlab code. 585 i1 FIGURE P22.15 22.15 The motion of a damped spring-mass system (Fig. P22.15) is described by the following ordinary differ- ential equation: dx dx in dt2 dt where x displacement from equilibrium position (m), t time (s), m 20-kg mass, and c the damping coefficient (N s/m). The damping coefficient c takes on three values of 5 (underdamped), 40 (critically damped), and 200 (over- damped). The spring constant k-20 N/m. The initial ve- locity is...

  • A second order mechanical system of a mass connected to a spring and a damper is subjected to a s...

    A second order mechanical system of a mass connected to a spring and a damper is subjected to a sinusoidal input force mx+cx + kx = A sin(at) The mass is m-5 kg, the damping constant is c = 1 N-sec/m, the spring stiffness is 2 N/m, and the amplitude of the input force is A- 3 N. For this system give explicit numerical values for the damping factor 5 and the un-damped natural frequency Using the given formulas for...

  • Answer last four questions 1. A spring-mass-damper system has mass of 150 kg, stiffness of 1500...

    Answer last four questions 1. A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and damping coefficient of 200 kg/s. i) Calculate the undamped natural frequency ii) Calculate the damping ratio iii) Calculate the damped natural frequency iv) Is the system overdamped, underdamped or critically damped? v) Does the solution oscillate? The system above is given an initial velocity of 10 mm/s and an initial displacement of -5 mm. vi) Calculate the form of the response and...

  • Consider a single degree of freedom (SDOF) with mass-spring-damper system

     Consider a single degree of freedom (SDOF) with mass-spring-damper system subjected to harmonic excitation having the following characteristics: Mass, m = 850 kg; stiffness, k = 80 kN/m; damping constant, c = 2000 N.s/m, forcing function amplitude, f0 = 5 N; forcing frequency, ωt = 30 rad/s. (a) Calculate the steady-state response of the system and state whether the system is underdamped, critically damped, or overdamped. (b) What happen to the steady-state response when the damping is increased to 18000 N.s/m? (Hint: Determine...

  • On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer func...

    On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function as: 1/(M*s^2 + B*s + K). With values mass M = 0.67538 kg, friction coefficient B = 1.8951 Ns/M, spring constant K = 322.278 N/M, and Damping coefficient d=2.54821 Ns/m. I know the Open loop system model is: (1/(0.6738s^2 + 1.89515s + 322.278)) = (1.481/(s^2+2.806s+4.772)) Implement a simple controller using only one mass (+spring + damper) so the control is critically damped

  • On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function...

    On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function as: 1/(M*s^2 + B*s + K). With values mass M = 0.67538 kg, friction coefficient B = 1.8951 Ns/M, spring constant K = 322.278 N/M, and Damping coefficient d=2.54821 Ns/m. I know the Open loop system model is: (1/(0.6738s^2 + 1.89515s + 322.278)) = (1.481/(s^2+2.806s+4.772)) Implement a simple controller using only one mass (+spring + damper) so the control is critically damped

  • Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described...

    Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described by the following ordinary differential equation: d’x dx ++ kx = 0 m dr dt where x = displacement from equilibrium position (m), t = time (s), m 20-kg mass, and c = the damping coefficient (N · s/m). The damping coefficient c takes on three values of 5 (under- damped), 40 (critically damped), and 200 (overdamped). The spring constant k = 20 N/m....

  • Consider the mass-spring-damper system depicted in the figure below, where the input of the system is...

    Consider the mass-spring-damper system depicted in the figure below, where the input of the system is the applied force F(t) and the output of the system is xít) that is the displacement of the mass according to the coordinate system defined in that figure. Assume that force F(t) is applied for t> 0 and the system is in static equilibrium before t=0 and z(t) is measured from the static equilibrium. b m F Also, the mass of the block, the...

  • 3.5: Non-homogeneous equations 10. A mass is attached to a spring and damper. We have m...

    3.5: Non-homogeneous equations 10. A mass is attached to a spring and damper. We have m = 3, c = 30, k = 63. We also have an initial position z(0) = 2, v(0) = 2. Suppose further that an external force of cos(26) acts on this box. Find the particular solution X(t). Is the system over, under, or critically damped?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT