Question

Two manned satellites approach one another at a relative velocity of v = 0.250 m/s

Two manned satellites approach one another at a relative velocity of v = 0.250 m/s, intending to dock. The first has a mass of mı = 4.00 x 10² kg and the second a mass of m2 = 7.50 x 10 kg. If the two satellites collide elastically rather than dock, what is their final relative velocity? 

image.png

final relative velocity: _______ m/s 

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

1 Collision is elastic Coefficient of Restitution Velocity of separation Velocite of approach 1 - Velocity of separation 0.25

Add a comment
Answer #2

Because the problem only gives the relative initial speed between the two satellites, you are free to choose one of those satellites to be at rest initially. In the figure, assume the satellite on the left has mass m1" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> and is moving at velocity v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> to the right, whereas the satellite on the left has mass m2" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> and is stationary.


An elastic collision conserves both the total momentum and the total kinetic energy, and therefore

ptot,i=ptot,fm1v1,i+m2v2,i=m1v1,f+m2v2,fm1v+0=m1v1,f+m2v2,fm1v=m1v1,f+m2v2,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

and

Ktot,i=Ktot,f12m1v1,i2+12m2v2,i2=12m1v1,f2+12m2v2,f2m1v2+0=m1v1,f2+m2v2,f2m1v2=m1v1,f2+m2v2,f2" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

All the variables in the last expressions for ptot" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> and Ktot" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> are known except for the final speeds of the first and second satellite, v1,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">, and v2,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> respectively. Solve the ptot" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ptot expression for v1,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">, and then substitute it into the Ktot" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> expression to find v2,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

v1,f=m1vm2v2,fm1" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

So,

m1(m1vm2v2,fm1)2+m2v2,f2=m1v2(m12v22m1m2vv2,f+m22v2,f2)+m1m2v2,f2=m12v2(m1m2+m22)v2,f2+(2m1m2v)v2,f+0=0" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

Using the quadratic formula,

v2,f=2m1m2v+4m12m22v24(m1m2+m22)(0)2(m1m2+m22)=2m1m2v+4m12m22v22m2(m1+m2)=4m1m2v2m2(m1+m2)=2m1vm1+m2" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

or

v2,f=2m1m2v4m12m22v24(m1m2+m22)(0)2(m1m2+m22)=2m1m2v4m12m22v22m2(m1+m2)=02m2(m1+m2)=0" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

Now substitute these possibilities for v2,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> into the expression for v1,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">.

v1,f=m1vm2(2m1vm1+m2)m1=(12m2(m1+m2))v=(m1+m22m2m1+m2)v=(m1m2m1+m2)v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

or

v1,f=m1vm2(0)m1=v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

The solution with v1,f=v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> and v2,f=0" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;"> are the initial conditions, so ignore this solution because it would imply the two satellites do not interact at all. Use the first solution to find the final relative speed.

vfinal=v1,fv2,f=(m1m2m1+m2)v2m1m1+m2v=(m1m22m1m1+m2)v=((1)(m1+m2)m1+m2)v=v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">

So, the final relative speed after the collision is just 0.250" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">0.250 m/s, which means they are separating at the same relative speed at which they approached each other.

It may seem that you did a lot of algebra to arrive at a very simple answer. It is often the case in physics that the amount of math involved depends on how the problem was set up. You may want to think about whether there is a way of setting this problem up that would reduce the amount of work involved in finding the answer. For example, you arbitrarily picked one of the satellites to define the "rest frame" used for analyzing the problem. Would some other choice of rest frame simplify the analysis?


source: Solution
answered by: Solver
Add a comment
Answer #3

Because the problem only gives the relative initial speed between the two satellites, you are free to choose one of those satellites to be at rest initially. In the figure, assume the satellite on the left has mass m1" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">m1 and is moving at velocity v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v to the right, whereas the satellite on the left has mass m2" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">m2 and is stationary.

An elastic collision conserves both the total momentum and the total kinetic energy, and therefore

ptot,i=ptot,fm1v1,i+m2v2,i=m1v1,f+m2v2,fm1v+0=m1v1,f+m2v2,fm1v=m1v1,f+m2v2,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ptot,i=ptot,fm1v1,i+m2v2,i=m1v1,f+m2v2,fm1v+0=m1v1,f+m2v2,fm1v=m1v1,f+m2v2,f

and

Ktot,i=Ktot,f12m1v1,i2+12m2v2,i2=12m1v1,f2+12m2v2,f2m1v2+0=m1v1,f2+m2v2,f2m1v2=m1v1,f2+m2v2,f2" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Ktot,i=Ktot,f12m1v1,i2+12m2v2,i2=12m1v1,f2+12m2v2,f2m1v2+0=m1v1,f2+m2v2,f2m1v2=m1v1,f2+m2v2,f2


All the variables in the last expressions for ptot" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ptot and Ktot" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Ktot are known except for the final speeds of the first and second satellite, v1,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v1,f and v2,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v2,f, respectively. Solve the ptot" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ptot expression for v1,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v1,f, and then substitute it into the Ktot" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Ktot expression to find v2,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v2,f.

v1,f=m1vm2v2,fm1" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v1,f=m1vm2v2,fm1


So,

m1(m1vm2v2,fm1)2+m2v2,f2=m1v2(m12v22m1m2vv2,f+m22v2,f2)+m1m2v2,f2=m12v2(m1m2+m22)v2,f2+(2m1m2v)v2,f+0=0" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">m1(m1vm2v2,fm1)2+m2v2,f2=m1v2(m12v22m1m2vv2,f+m22v2,f2)+m1m2v2,f2=m12v2(m1m2+m22)v2,f2+(2m1m2v)v2,f+0=0


Using the quadratic formula,

v2,f=2m1m2v+4m12m22v24(m1m2+m22)(0)2(m1m2+m22)=2m1m2v+4m12m22v22m2(m1+m2)=4m1m2v2m2(m1+m2)=2m1vm1+m2" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v2,f=2m1m2v+4m12m22v24(m1m2+m22)(0)2(m1m2+m22)=2m1m2v+4m12m22v22m2(m1+m2)=4m1m2v2m2(m1+m2)=2m1vm1+m2


or

v2,f=2m1m2v4m12m22v24(m1m2+m22)(0)2(m1m2+m22)=2m1m2v4m12m22v22m2(m1+m2)=02m2(m1+m2)=0" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v2,f=2m1m2v4m12m22v24(m1m2+m22)(0)2(m1m2+m22)=2m1m2v4m12m22v22m2(m1+m2)=02m2(m1+m2)=0


Now substitute these possibilities for v2,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v2,f into the expression for v1,f" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v1,f.

v1,f=m1vm2(2m1vm1+m2)m1=(12m2(m1+m2))v=(m1+m22m2m1+m2)v=(m1m2m1+m2)v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v1,f=m1vm2(2m1vm1+m2)m1=(12m2(m1+m2))v=(m1+m22m2m1+m2)v=(m1m2m1+m2)v


or

v1,f=m1vm2(0)m1=v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v1,f=m1vm2(0)m1=v


The solution with v1,f=v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v1,f=v and v2,f=0" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">v2,f=0 are the initial conditions, so ignore this solution because it would imply the two satellites do not interact at all. Use the first solution to find the final relative speed.

vfinal=v1,fv2,f=(m1m2m1+m2)v2m1m1+m2v=(m1m22m1m1+m2)v=((1)(m1+m2)m1+m2)v=v" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; font-size: 18px; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">vfinal=v1,fv2,f=(m1m2m1+m2)v2m1m1+m2v=(m1m22m1m1+m2)v=((1)(m1+m2)m1+m2)v=v


So, the final relative speed after the collision is just 0.250" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">0.250 m/s, which means they are separating at the same relative speed at which they approached each other.

It may seem that you did a lot of algebra to arrive at a very simple answer. It is often the case in physics that the amount of math involved depends on how the problem was set up. You may want to think about whether there is a way of setting this problem up that would reduce the amount of work involved in finding the answer. For example, you arbitrarily picked one of the satellites to define the "rest frame" used for analyzing the problem. Would some other choice of rest frame simplify the analysis?


source: solution
answered by: Solver
Add a comment
Know the answer?
Add Answer to:
Two manned satellites approach one another at a relative velocity of v = 0.250 m/s
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two manned satellites approach one another at a relative velocity of v = 0.250 m/s, intending...

    Two manned satellites approach one another at a relative velocity of v = 0.250 m/s, intending to dock. The first has a mass of m 1 = 4.00 × 10 3 kg and the second a mass of m 2 = 7.50 × 10 3 kg. If the two satellites collide elastically rather than dock, what is their final relative velocity? Two satellites approach each other along the same horizontal line. final relative velocity: m / s Question Credit: OpenStax...

  • Two manned satellites approach one another at a relative speed of 0.230 m/s

     8.29T - Elastic Collisions in One Dimension Two manned satellites approach one another at a relative speed of 0.230 m/s, intending to dock. The first has a mass of 4.00 x103 kg, and the second a mass of 7.84x103 kg. If the two satellites collide elastically rather than dock, what is their final relative velocity? Assume that the collision is in 1- dimension. 

  • Two manned satellites approach one another at a relative speed of 0.210 m/s

    8.29T Elastic Collisions in One Dimension Two manned satellites approach one another at a relative speed of 0.210 m/s, intending to dock. The first has a mass of 3.24x103 kg, and the second a mass of 6.72x103 kg. If the two satellites collide elastically rather than dock, what is their final relative velocity? Assume that the collision is in 1-dimension.  

  • Two manned satellites approach one another at a relative speed of 0.100 m/s, intending to dock....

    Two manned satellites approach one another at a relative speed of 0.100 m/s, intending to dock. The first has a mass of 5.00 ✕ 103 kg, and the second a mass of 7.50 ✕ 103 kg. If the two satellites collide elastically rather than dock, what is their final relative velocity in meters per second? (Adopt the reference frame in which the second satellite is initially at rest and assume that the positive direction is directed from the second satellite...

  • Two manned satellites approaching one another at a relative speed of 0.550 m/s intend to dock....

    Two manned satellites approaching one another at a relative speed of 0.550 m/s intend to dock. The first has a mass of 4.00 ✕ 103 kg, and the second a mass of 7.50 ✕ 103 kg. If the two satellites collide elastically rather than dock, what is their final relative velocity? Adopt the reference frame in which the second satellite is initially at rest and assume that the positive direction is directed from the second satellite towards the first satellite....

  • Two manned satellites approaching one another, at a relative speed of 0.150 m/s, intending to dock....

    Two manned satellites approaching one another, at a relative speed of 0.150 m/s, intending to dock. The first has a mass of 3.50 x 10^3 kg, and the second a mass of 7.50 x 10^3 kg. (a) Calculate the final velocity (after docking) in m/s by using the frame of reference in which the first satellite was orginally at rest. (Assume the second satellite moves in the positive direction. Include the sign of the value in your answer.) (b) What...

  • Two manned satellites approaching one another, at a relative speed of 0.500 m/s, intending to dock....

    Two manned satellites approaching one another, at a relative speed of 0.500 m/s, intending to dock. The first has a mass of 5.00 ✕ 103 kg, and the second a mass of 7.50 ✕ 103 kg. (a) Calculate the final velocity (after docking) in m/s by using the frame of reference in which the first satellite was originally at rest. (Assume the second satellite moves in the positive direction. Include the sign of the value in your answer.) (b) What...

  • Two manned satellites approaching one another at a relative speed of 0.500 m/s intend to dock

    Two manned satellites approaching one another at a relative speed of 0.500 m/s intend to dock. The first has a mass of 5.00 x 103kg, and the second a mass of 7.50 x 10kg. Assume that positive direction is directed from the second satellite towards the first satellite. (a) Calculate the final velocity after docking, in the frame of reference in which the first satellite was originally at rest. m/s (b) What is the loss of kinetic energy in this inelastic collision? (c)...

  • What is the change in Kinetic Energy, in joules, in this frame of reference? Please can...

    What is the change in Kinetic Energy, in joules, in this frame of reference? Please can someone show me every step? Thanks (6%) Problem 15: Two manned satellites are approaching one another at a relative speed of 0.225 m/s, intending to dock. The first has a mass of 3.75 x 103 kg, and the second a mass of 9.8 x 103 kg.

  • One particle of mass m1 = 1.00 kg with an initial velocity of 5.40 m/s i...

    One particle of mass m1 = 1.00 kg with an initial velocity of 5.40 m/s i collides with a second particle of mass m2 = 2.00 kg that is initially at rest. After the collision mı goes off with a final speed of 4.20 m/s in a direction 32.0° above i. V 5.4 ms (a) Find the final velocity (in terms of magnitude AND direction) of m2. agnitude AND direction) of m. Vi = 4.2 m/s (HINT: Find the direction...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT