Question

Use the figures to calculate the left and right Riemann sums for f on the given interval and the given value of n. 3 f(x) = +
0 0
Add a comment Improve this question Transcribed image text
Answer #1

\\\mathrm{f\left(x\right)=\frac{3}{x}+1\:,\left(1,5\right)\:n=4}\\ \\ \mathrm{\mathrm{Riemann\:Sum\:for}\:\int _1^5\frac{3}{x}+1dx\:\mathrm{with}\:n=4\:\mathrm{rectangles,\:using\:left\:endpoints}}\\ \\ \mathrm{Riemann\:sum\:using\:left\:endpoints\:of\:subinterval}\\ \\ \mathrm{\int _a^bf\left(x\right)dx\:\approx \Delta \:x\left(f\left(x_0\right)+f\left(x_1\right)+...+f\left(x_{n-1}\right)\right),\:}\\ \\ \mathrm{\mathrm{where}\:\Delta \:x\:=\:\frac{b-a}{n}}\\ \\ \mathrm{\mathrm{Apply\:Riemann\:Formula}}\\ \\ \mathrm{\mathrm{Given:}\:a=1,\:b=5,\:n=4}\\ \\ \mathrm{\Delta x=\frac{5-1}{4}=1}\\ \\ \mathrm{\mathrm{Divide\:the\:interval}\:1\le \:x\le \:5\:\mathrm{into}\:n=4\:\mathrm{subintervals\:of\:length}\:\Delta x=1\:}\\ \\ \mathrm{x_0=1,\:x_1=2,\:x_2=3,\:x_3=4,\:x_4=5}\\ \\ \mathrm{=1\cdot \left(f\left(x_0\right)+f\left(x_1\right)+f\left(x_2\right)+f\left(x_3\right)\right)}\\ \\

\\\mathrm{\mathrm{Calculate\:Sub\:Intervals}}\\ \\ \mathrm{\Rightarrow f\left(x_0\right):}\\ \\ \mathrm{f\left(x_0\right)=f\left(1\right)}\\ \\ \mathrm{=\frac{3}{1}+1=4}\\ \\ 4\\ \\ \mathrm{\Rightarrow f\left(x_1\right)}\\ \\ \mathrm{f\left(x_1\right)=f\left(2\right)}\\ \\ \mathrm{=\frac{3}{2}+1}\\ \\ \mathrm{=\frac{5}{2}}\\ \\ \mathrm{\Rightarrow f\left(x_2\right)}\\ \\ \mathrm{f\left(x_2\right)=f\left(3\right)}\\ \\ \mathrm{=\frac{3}{3}+1}\\ \\ \mathrm{=2}\\ \\ \mathrm{\Rightarrow f\left(x_3\right)}\\ \\ \mathrm{f\left(x_3\right)=f\left(4\right)}\\ \\ \mathrm{=\frac{3}{4}+1}\\ \\ \mathrm{=\frac{7}{4}}\\ \\

\bg_white \\\mathrm{\mathrm{=1\cdot \left(4+\frac{5}{2}+2+\frac{7}{4}\right)}\\}\\ \\ \mathrm{=10.25}

\\\mathrm{\mathrm{Riemann\:Sum\:for}\:\int _1^5\frac{3}{x}+1dx\:\mathrm{with}\:n=4\:\mathrm{rectangles,\:using\:right\:endpoints}}\\ \\ \mathrm{\mathrm{Riemann\:sum\:using\:right\:endpoints\:of\:subinterval}}\\ \\ \mathrm{\int _a^bf\left(x\right)dx\:\approx \Delta \:x\left(f\left(x_1\right)+f\left(x_2\right)+...+f\left(x_n\right)\right),\:}\\ \\ \mathrm{\mathrm{where}\:\Delta \:x\:=\:\frac{b-a}{n}}\\ \\ \mathrm{\mathrm{Apply\:Riemann\:Formula}}\\ \\ \mathrm{\mathrm{Given:}\:a=1,\:b=5,\:n=4}\\ \\ \mathrm{\Delta x=\frac{5-1}{4}=1}\\ \\ \mathrm{\mathrm{Divide\:the\:interval}\:1\le \:x\le \:5\:\mathrm{into}\:n=4\:\mathrm{subintervals\:of\:length}\:\Delta x=1\:}\\ \\ \mathrm{x_0=1,\:x_1=2,\:x_2=3,\:x_3=4,\:x_4=5}\\ \\ \mathrm{=1\cdot \left(f\left(x_1\right)+f\left(x_2\right)+f\left(x_3\right)+f\left(x_4\right)\right)}\\ \\

\\\mathrm{\mathrm{Calculate\:Sub\:Intervals}}\\ \\ \mathrm{\Rightarrowf\left(x_1\right) }\\ \\ \mathrm{f\left(x_1\right)=f\left(2\right)}\\ \\ \mathrm{3/2+1=5/2}\\ \\ \mathrm{\Rightarrow f\left(x_2\right)}\\ \\ \mathrm{f\left(x_2\right)=f\left(3\right)}\\ \\ \mathrm{3/3+1=2}\\ \\ \mathrm{\Rightarrow f\left(x_3\right)}\\ \\ \mathrm{f\left(x_3\right)=f\left(4\right)={3}/{4}+1=7/4}\\ \\ \mathrm{\Rightarrowf\left(x_4\right) }\\ \\ \mathrm{f\left(x_4\right)=f\left(5\right)}\\ \\ \mathrm{{3}/{5}+1={8}/{5}}\\ \\ \mathrm{=1\cdot \left({5}/{2}+2+{7}/{4}+{8}/{5}\right)}\\ \\ \mathrm{=7.85}\\ \\

Add a comment
Know the answer?
Add Answer to:
Use the figures to calculate the left and right Riemann sums for f on the given...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT