Question

1. Light of wavelength 640 nm is incident on two slits separated by 0.880 mm. An...

1. Light of wavelength 640 nm is incident on two slits separated by 0.880 mm. An interference pattern is observed on a screen 2.20 m away.

a) Using the small angle approximation (tan θ  sinθ), find the distance between the central maximum and the first bright fringe.

b) What percent of error is made in locating of the seventh-order bright fringe if the small angle approximation is used compared to using the exact trigonometric function?

c) How does the separation between the fringes change if the wavelength of the light is doubled?

d) Using the original 640 nm light, if the viewing screen is infinitely large, what is the algebraic expression for the highest order (m) bright fringe that can be formed on the screen? Determine the highest order on the screen.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ти MAXIMA 7 0 ANGULAR SEPRAZLON B&BUEEN CENTRAL & MAXIMA S GIVEN Sind mx S2L USING У GIVES - LINEAR SEPRATION SCREEN y BETWEE

Add a comment
Know the answer?
Add Answer to:
1. Light of wavelength 640 nm is incident on two slits separated by 0.880 mm. An...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two parallel slits are illuminated by light composed of two wavelengths. One wavelength is λA =...

    Two parallel slits are illuminated by light composed of two wavelengths. One wavelength is λA = 657 nm. The other wavelength is λB and is unknown. On a viewing screen, the light with wavelength λA = 657 nm produces its fifth-order bright fringe at the same place where the light with wavelength λB produces its sixth dark fringe. The fringes are counted relative to the central or zeroth-order bright fringe. What is the unknown wavelength in nm?

  • Consider double slit experiment with two slits are separated by d=0,715 mm

    Consider double slit experiment with two slits are separated by d=0.715 mm and each slit width is 0.00321 mm. Screen is placed L=1.28 m away from the slits. a) Derive an algebraic equation to find linear distance of interference bright fringe on the screen from central bright (central maxima) fringe?  b) Consider interference pattern due to light of unknown wavelength and linear separation between 2 and 5" bright fringes is 3.05 mm. Find the wavelength of the light? c) Now consider double slit...

  • Coherent light of wavelength 670 nm passes through two parallel slits separated by 0.25 mm. The...

    Coherent light of wavelength 670 nm passes through two parallel slits separated by 0.25 mm. The interference pattern is observed on a screen 90 cm from the slits. If the width of each slit is 0.08 mm, (a) what is the order of the first bright fringe missing from the pattern? (b)how far from the cbf is this missing fringe?

  • 4. Light, with 550 nm wavelength, is used to illuminate double slits which are separated of...

    4. Light, with 550 nm wavelength, is used to illuminate double slits which are separated of 3.5 x 10-5 m. A screen is placed 1.25 m from the slits.    a. Find the angle of the first bright fringe.    b. Find the angle of the third bright fringe.           A diffraction grating has 3 x 106 lines per meter. The grating is illuminated by monochromatic plane waves of wavelength 600 nm at normal incidence that forms an interference...

  • 4. Light, with 550 nm wavelength, is used to illuminate double slits which are separated of...

    4. Light, with 550 nm wavelength, is used to illuminate double slits which are separated of -5 3.5 x 10 m. A screen is placed 1.25 m from the slits. a. Find the angle of the first bright fringe. (5 points) b. Find the angle of the third bright fringe. (5 points) A diffraction grating has 3 x 106 lines per meter. The grating is illuminated by monochromatic plane waves of wavelength 600 nm at normal incidence that forms an...

  • 19. Two narrow slits are separated by 0.250 mm and illuminated with green light of wavelength...

    19. Two narrow slits are separated by 0.250 mm and illuminated with green light of wavelength 555 nm. The light passes through the slits and shines on a screen 2.00 m behind the slits. 8. If the zeroth order bright tringe falls on the screen at angle 9 -0 radians (straight in front of the slits), at what angle (in radians) does the rst order bright fringe appear?

  • Light of wavelength 429 nm (in vacuum) is incident on a diffraction grating that has a...

    Light of wavelength 429 nm (in vacuum) is incident on a diffraction grating that has a slit separation of 1.2 × 10-5 m. The distance between the grating and the viewing screen is 0.10 m. A diffraction pattern is produced on the screen that consists of a central bright fringe and higher-order bright fringes (see the drawing). (a) Determine the distance y from the central bright fringe to the second-order bright fringe. (Hint: The diffraction angles are small enough that...

  • Light of wavelength 385 nm (in vacuum) is incident on a diffraction grating that has a...

    Light of wavelength 385 nm (in vacuum) is incident on a diffraction grating that has a slit separation of 1.2 × 10-5 m. The distance between the grating and the viewing screen is 0.18 m. A diffraction pattern is produced on the screen that consists of a central bright fringe and higher-order bright fringes (see the drawing). (a) Determine the distance y from the central bright fringe to the second-order bright fringe. (Hint: The diffraction angles are small enough that...

  • Light with a wavelength of 520 nm passes through 0.25 mm slits that are 1.0 mm...

    Light with a wavelength of 520 nm passes through 0.25 mm slits that are 1.0 mm apart. An interference pattern is seen on a screen that is 2.5 m away. How far from the center is the first dark fringe due to the slit width? How far from the center are the bright fringes that fall within this distance?

  • Two thin slits separated by 2.2 mm are illuminated by light from a He-Ne laser (λ...

    Two thin slits separated by 2.2 mm are illuminated by light from a He-Ne laser (λ = 633 nm), producing interference fringes on a distant screen. Find the angle between the centers of the central bright fringe and the next bright fringe. (in degrees)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT