Question

indi 2.. In the figure shown, shaft A, made of AISI 1020 hot-rolled steel, is welded to a fixed support and is subjected to l

doesn't need any extra information, everything is in there

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1020 HR Sut= 55 kpsi , Sy= 30 kpi Given from table A-20 for ASI kus = 1:6 fmin = 150 uby fmo- soo liby L = 24 1 > d- / in - VHatique Stress concentration facet Refus Ifs= it a shocu (kts-1) = t 0.8 (1.6-1) 1.48 The maximum torque is Tmoc = - fmox (1+I mean Tmox & Timin Tamplitude = Tmoc - Emin 2 ID 11251+ 3375 2 11251- 3375 7313 psi Tamplitude 3938 psc 3.938 kpsi 13332 I m5900 64(55) Sso 36.85 kosi for modiped goodman factor of sclety is Mt tamp & Tmean 8se SSU 3.938 13.0412 + 7.313 36.85 nt 1.9

Add a comment
Know the answer?
Add Answer to:
doesn't need any extra information, everything is in there indi 2.. In the figure shown, shaft...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An shown in the folloing figure, shaft A. made of AISI 1020 hot-rolled steelis welded to...

    An shown in the folloing figure, shaft A. made of AISI 1020 hot-rolled steelis welded to a ised suppot and is subjected to loading by simultaneous forces Fr and F:via shat B. A theoretieal stress concentration factor K of 1.6 and K, of 1.4 is induced in the shat by the E in weld fillet 1 he, lengi h of shaft A from the fixed support to the connection at shaft B is 2 ft. The load cycles thom 1S0...

  • 2.The shaft shown in the figure is driven by a gear at the right keyways, drive...

    2.The shaft shown in the figure is driven by a gear at the right keyways, drive a fan at eh left keyways, and supported by two deep grove ball bearings. The shaft is made of AISI 1020 cold- drawn steel. At steady state speed, the gear transmits a radial load of 230 Ibf and a tangential load of 633 Ibf at pitch diameter of 8 inch. Determine fatigue factor of safety at any potentially critical locations using the DE-Gerber failure...

  • The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates...

    The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates at 1600 rpm and is supported in rolling bearings at A and B. The applied forces are F1 = 1200 lbf and F2 = 2400 lbf. Determine the minimum fatigue factor of safety (nd based on achieving infinite life. If infinite life is not predicted, estimate the number of cycles (M) to failure. Also check for yielding. op - in 8in- F F in]...

  • The shaft shown in the figure is machined from AISI 1040 CD steel and is supported in rolling bearings at A and B.

    The shaft shown in the figure is machined from AISI 1040 CD steel and is supported in rolling bearings at A and B. The applied forces F1 = 1500 lbf and F2 = 3000 lbf are coming off of gears located at respective positions. The shaft rotates at 2000 rpm while transmitting 50hp between the gears. Determine the minimum fatigue factor of safety based on achieving infinite life using Modified- Goodman theory. If infinite life is not predicted, estimate the...

  • 1) The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft...

    1) The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates at 1600 rpm and is supported in rolling bearings at A and B. The applied forces are F1-1000 lbf and F2-400 lbf. The torque, 100 lbf.in, is also applied between C and D. Determine the minimum fatigue factor of safety based on: a) Soderburg b) Modified-Goodman c) Gerber d) ASME-DE (ASME-DE criteria e) If infinite life is not predicted, estimate the number of...

  • The shaft shown is made of AISI 1040 CD steel

    The shaft shown is made of AISI 1040 CD steel. It is machine finished and is subjected to a repeated bending stress of 15ksi. The diameter at the shoulder is 1.3in and will be used at a temperature of 400F. Estimate: (a) The endurance limit at 95% reliability (b) Endurance strength at 105 cycles and show on S-N plot 10 (c) Plot the design region by Modified Goodman theory and determine if failure is by yield or fatigue  (d) Find the factor of safety...

  • The rotating shaft shown in the figure is machined from AISI 1020 CD steel. It is subjected to a force of F=6 kN.

    Problem 4: The rotating shaft shown in the figure is machined from AISI 1020 CD steel. It is subjected to a force of F=6 kN. Find the maximum factor of safety for fatigue based on infinite life. If the life is not infinite, estimate the number of cycles. Be sure to check for yielding. All dimensions are in mm.

  • A rotating step shaft is loaded as shown, where the forces FA and FB are constant...

    A rotating step shaft is loaded as shown, where the forces FA and FB are constant at 600 lbf and 300 lbf, respectively, and the torque T alternates from 0 to 1800 lbf . in. The shaft is to be considered simply supported at points and C, and is made of AISI 1045 CD steel with a fully corrected endurance limit of Se = 40 kpsi. Let Kg = 2.1 and K = 1.7. For a design factor of 2.5...

  • QUESTION 10 The shaft shown in the figure is driven by a gear at the right...

    QUESTION 10 The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left keyway, and is supported by two deep-groove ball bearings at locations A and B. The shaft is made from AISI 1045 cold-drawn steel. At steady-state speed, the gear transmits a radial load of 300 lbf and a tangential load of 700 lbf at a pitch diameter of 8 in. Assume that the weight and axial load of...

  • The shaft shown in the figure is driven by a gear at the right keyway, drives...

    The shaft shown in the figure is driven by a gear at the right keyway, drives a fan at the left keyway, and is supported by two deep-groove ball bearings at locations A and B. The shaft is made from AISI 1045 cold-drawn steel. At steady-state speed, the gear transmits a radial load of 300 lbf and a tangential load of 700 lbf at a pitch diameter of 8 in. Assume that the weight and axial load of the fan...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT