Question

The shaft shown in the figure is machined from AISI 1040 CD steel and is supported in rolling bearings at A and B.


The shaft shown in the figure is machined from AISI 1040 CD steel and is supported in rolling bearings at A and B. The applied forces F1 = 1500 lbf and F2 = 3000 lbf are coming off of gears located at respective positions. The shaft rotates at 2000 rpm while transmitting 50hp between the gears. Determine the minimum fatigue factor of safety based on achieving infinite life using Modified- Goodman theory. If infinite life is not predicted, estimate the number of cycles to failure. Also check for yielding. 

image.png

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The shaft shown in the figure is machined from AISI 1040 CD steel and is supported in rolling bearings at A and B.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates...

    The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates at 1600 rpm and is supported in rolling bearings at A and B. The applied forces are F1 = 1200 lbf and F2 = 2400 lbf. Determine the minimum fatigue factor of safety (nd based on achieving infinite life. If infinite life is not predicted, estimate the number of cycles (M) to failure. Also check for yielding. op - in 8in- F F in]...

  • The shaft shown in the figure is machined from AISI 1040 CD steel.

    The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates at 1600 rpm and is supported in rolling bearings at A and B. The applied forces are F1 = 2500 lbf and F2 = 1000 lbf. Analyze the shaft for fatigue and yielding with respect to finite and infinite life.

  • 1) The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft...

    1) The shaft shown in the figure is machined from AISI 1040 CD steel. The shaft rotates at 1600 rpm and is supported in rolling bearings at A and B. The applied forces are F1-1000 lbf and F2-400 lbf. The torque, 100 lbf.in, is also applied between C and D. Determine the minimum fatigue factor of safety based on: a) Soderburg b) Modified-Goodman c) Gerber d) ASME-DE (ASME-DE criteria e) If infinite life is not predicted, estimate the number of...

  • The shaft shown is made of AISI 1040 CD steel

    The shaft shown is made of AISI 1040 CD steel. It is machine finished and is subjected to a repeated bending stress of 15ksi. The diameter at the shoulder is 1.3in and will be used at a temperature of 400F. Estimate: (a) The endurance limit at 95% reliability (b) Endurance strength at 105 cycles and show on S-N plot 10 (c) Plot the design region by Modified Goodman theory and determine if failure is by yield or fatigue  (d) Find the factor of safety...

  • The rotating shaft shown in the figure is machined from AISI 1020 CD steel. It is subjected to a force of F=6 kN.

    Problem 4: The rotating shaft shown in the figure is machined from AISI 1020 CD steel. It is subjected to a force of F=6 kN. Find the maximum factor of safety for fatigue based on infinite life. If the life is not infinite, estimate the number of cycles. Be sure to check for yielding. All dimensions are in mm.

  • The solid cireular cross-section bar shown is machined from AISI 1040 CD steel and is subjected t...

    show all work and steps The solid cireular cross-section bar shown is machined from AISI 1040 CD steel and is subjected to a t60 kip fuctuating axial load as shown. 18 in 8 in 8 in 0.20 in rad." L- 2-in dia. 3-in dia. +60 kip НН -60 kip 1. Estimate the fully corrected endurance limit. Express your answer in ksi. 2. Determine the minimum factor of safety based on achieving infinite life 3. Determine the factor of safety against...

  • The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed...

    The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 28 kN in compression to 28 kN in tension. Estimate the fatigue factor of safety based on achieving infinite life and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 6-mm. 25 mm + 10 mm What is the factor of safety against yielding? The factor of safety against yielding is...

  • The rotating shaft in the glven figure is machined from AISI 1020 CD steel. It is...

    The rotating shaft in the glven figure is machined from AISI 1020 CD steel. It is subjected to a force of F=7 kN. Find the minimum factor of safety for fatigue based on Infinite life. Be sure to check for yielding. 500 175 23 D. 35 D. -3R. 50 D -23 D. 20 -180 What are the values of the theoretical stress-concentration factor, the notch sensitivity, and the fatigue stress concentration-factor? The value of the theoretical stress-concentration factor is The...

  • Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a...

    Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 16 KN in compression to 16 kN in tension. Estimate the fatigue factor of safety based on achieving infinite life and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 6-D S 10 What is the factor of safety against fatigue? The factor of safety against fatigue is

  • Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a...

    Required information The cold-drawn AISI 1040 steel bar shown in the figure is subjected to a completely reversed axial load fluctuating between 16 KN in compression to 16 kN in tension Estimate the fatigue factor of safety based on achieving infinite life and the yielding factor of safety. If infinite life is not predicted, estimate the number of cycles to failure. 6-D 25 man 10 What is the number of cycles to failure for this part? The value of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT