Question

Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specifi
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given Inlet temperature, T, = 366 K Inlet pressure, P, = 496 kPa Inlet velocity, V, = 99 m/s Inlet area, Az = 8.7 cm² = 8.7 x

(c) Stagnation temperature at the inlet can be computed as k-1 T01 = T (1+ M 2 Substituting the known values 1.4 - 1 T01 = 36

(e) Since flow accelerate from a subsonic velocity to supersonic velocity, Mach number for the flow at throat would be 1. The

(g) Since the Mach number is unity at the throat the velocity of the flow will be sonic velocity at the throat. Therefore V =

(i) Since, the flow is isentropic, the stagnation properties remain constant throughout the flow. Therefore To2 = Toi = T, =

(k) Velocity the exit can be obtained as V2 = M,C2 = M2 VRT, Substituting the known values V2 = 1.7 X V1.4 x 287 x 235.0308 =

Add a comment
Know the answer?
Add Answer to:
Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k-14 and R-0.287 LJ/kg-K respectively, --Given Values Inlet Temperature: TI (K) - 339 Inlet pressure: P1 (kPa)=618 Inlet Velocity: VI (m/s) = 68 Area at nozzle inlet: Al (em'2)7.77 Throat area: A...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. So equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) = 8.81...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) 370 Inlet pressure: P1 (kPa) = 576 Inlet Velocity: V1 (m/s) - 106 Area at nozzle inlet: A1 (cm^2) = 8.32...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 321 Inlet pressure: P1 (kPa) = 588 Inlet Velocity: V1 (m/s) = 97 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, nir as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, nir as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables Note: The specific heat ratio and gas constant for air are given as k-14 and R-0.287 kJ/kg-K respectively, Give Values Inlet Temperature: TI(K) - 339 Inlet pressure: P1 (kPa)-618 Inlet Velocity: V1 (m/s) - 68 Area at nozzle inlet: Al (cm'2) - 7.77 Throat area:...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 348 Inlet pressure: P1 (kPa) = 544 Inlet Velocity: V1 (m/s) = 122 Area at nozzle inlet: A1 (cm^2) =...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations the system. Solve using equations rather than with the tables. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 353 Inlet pressure: Pl (kPa) = 546 Inlet Velocity: V1 (m/s) = 61 Area at nozzle inlet: A1 (cm^2) = 7.24...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 338 Inlet pressure: P1 (kPa) = 555 Inlet Velocity: V1 (m/s) = 121 Area at inlet (cm^2) = 9 Mach number at the exit = 1.56 a) Determine...

  • Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant...

    Air flows through a converging-diverging nozzle/diffuser. Assuming isentropic flow, air as an ideal gas, and constant specific heats determine the state at several locations in the system. Note: The specific heat ratio and gas constant for air are given as k=1.4 and R=0.287 kJ/kg-K respectively. --Given Values-- Inlet Temperature: T1 (K) = 360 Inlet pressure: P1 (kPa) = 583 Inlet Velocity: V1 (m/s) = 105 Area at inlet (cm^2) = 8.2 Mach number at the exit = 1.86 a) Determine...

  • UBAV Air flows through a converging-diverging nozzle diffuser. A normal shock stands in the diverging section...

    UBAV Air flows through a converging-diverging nozzle diffuser. A normal shock stands in the diverging section of the nozzle. Assuming isentropie flow, air as an ideal gas, and constant specific heat determine the state at several locations in the system. Solve wsing equations rather than with the tables Note: The Specific heat ratio and gas constant for air are given as k-1 and R 0.287 kJ/kg-K respectively Give Values Inlet Temperature: TI(K)-340 Inlet pressure: P1 (kPa) - 550 Inlet Velocity:...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT