Question

Question 10 5 pts A manufacturer believes that its heat pump has a COP of 12.0 when heating water at 50°C using ambient air a

0 0
Add a comment Improve this question Transcribed image text
Answer #1

323k Win Given TH=50+ 273 323K Te 20 + 273 = 293K Maximum possible cop of this heat pump will be the carnot cop which can bei have explained throuly from basics hope you will understand easily please upvote it your positive reviews are motivates us. Thank you

Add a comment
Know the answer?
Add Answer to:
Question 10 5 pts A manufacturer believes that its heat pump has a COP of 12.0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (12 pts) A heat pump operating on a cyclic process receives heat from a reservoir at...

    (12 pts) A heat pump operating on a cyclic process receives heat from a reservoir at 500°C and rejects the waste heat at a rate of 30 kW to the ambient air at 300 K. If the work output of the engine is 45 kw, determine if the cycle is possible, and if the cycle is reversible. Explain with calculations. Show calculations using both efficiency (Method 1) and Entropy generation (Method 2) analysis.

  • A heat pump using refrigerant-134a as a refrigerant operates its condenser at 800 kPa and its...

    A heat pump using refrigerant-134a as a refrigerant operates its condenser at 800 kPa and its evaporator at −1.25°C. It operates on the ideal vapor-compression refrigeration cycle. What is the COP of the heat pump for the case when the vapor entering the compressor is superheated by 2°C and for the case when the compressor has no irreversibilities? The COP of the heat pump when the compressor has no irreversibilities is____. The COP of the heat pump when the vapor...

  • QUESTION 1 a) Company A designed a heat pump to supply heat into a library in...

    QUESTION 1 a) Company A designed a heat pump to supply heat into a library in Canada during winter, so that the library can maintain to be at 20°C. The heat pump utilizes 12,000 L/min of Refrigerant-134a as the working fluid and absorb heat from an industrial water stream. The water stream enters the evaporator at 50°C and exits at 25°C. The refrigerant enters the evaporator at 10°C with 90% moisture content and leaves at 20°C. There is no pressure...

  • QUESTION 1 a) Company A designed a heat pump to supply heat into a library in...

    QUESTION 1 a) Company A designed a heat pump to supply heat into a library in Canada during winter, so that the library can maintain to be at 20°C. The heat pump utilizes 12,000 L/min of Refrigerant-134a as the working fluid and absorb heat from an industrial water stream. The water stream enters the evaporator at 50°C and exits at 25°C. The refrigerant enters the evaporator at 10°C with 90% moisture content and leaves at 20°C. There is no pressure...

  • Thermodynamics A steam power plant operates with high pressure oft 4 MPa and hasleel receiving heat from a 700°C reservoir. The ambient air at 20°C provides cooling to maintain the water/vapor m...

    Thermodynamics A steam power plant operates with high pressure oft 4 MPa and hasleel receiving heat from a 700°C reservoir. The ambient air at 20°C provides cooling to maintain the water/vapor mixture in the condenser at 60°C. All components are ideal i.e., reversible) except the turbine which has an efficiency 92% of a reversible, isentropic process. Other than the irreversibility of the turbine, the power plant can be considered as a Rankine cycle. Determine the following quantities in the suggested...

  • Problem 3. Rankine Cycle (90 points) A steam power plant operates with high pressure of 4 MPa and has a boiler exit at 600°C receiving heat from a 700° C reservoir. The ambient air at 20°C provid...

    Problem 3. Rankine Cycle (90 points) A steam power plant operates with high pressure of 4 MPa and has a boiler exit at 600°C receiving heat from a 700° C reservoir. The ambient air at 20°C provides cooling to maintain the water/vapor mixture in the condenser at 60°C. All components are ideal (i.e., reversible) except the turbine which has an efficiency 92% ofa reversible isentropic process. Other than the irreversibility of the turbine, the power plant can be considered as...

  • Q1 a)  Company A designed a heat pump to supply heat into a library in Canada during...

    Q1 a)  Company A designed a heat pump to supply heat into a library in Canada during winter, so that the library can maintain to be at 20°C. The heat pump utilizes 12,000 L/min of Refrigerant-134a as the working fluid and absorb heat from an industrial water stream. The water stream enters the evaporator at 50°C and exits at 25°C. The refrigerant enters the evaporator at 10°C with 90% moisture content and leaves at 20°C. There is no pressure drop in...

  • termo QUESTION 4 (a) Derive and expression for the coefficient of performance (COP) of a completely...

    termo QUESTION 4 (a) Derive and expression for the coefficient of performance (COP) of a completely reversible heat pump in terms of the thermal energy reservoir, high temperatures T, and low temperature 1, respectively. Draw a diagram that support the COP derivation. [7 marks] (b) A Heat Pump (HP) is to be used for heating a bouse in winter as illustrated in Figure Q4(b). The house is to be maintained at 26°C at all times. When the temperature outdoors drop...

  • QUESTION 1 A heat pump with refrigerant-134a as the working fluid is used to keep a...

    QUESTION 1 A heat pump with refrigerant-134a as the working fluid is used to keep a space at 25°C by absorbing heat from geothermal water that enters the evaporator at 50°C at a rate of 0.065 kg/s and leaves at 40°C. The refrigerant enters the evaporator at 20°C with a quality of 23 percent and leaves at the inlet pressure as saturated vapor. The refrigerant loses 300 W of heat to the surroundings as it flows through the compressor and...

  • A heat pump using R134a refrigerant is used to hold a medium at 23c. In the...

    A heat pump using R134a refrigerant is used to hold a medium at 23c. In the evaporator part, geothermal water (cp = 4.18) with 0.0045 flow rate entering at 60c and leaving at 45c is used. r134a enters the evaporator at 20c, 15% dryness and exits as saturated steam at the same pressure. Since the compressor consumes 1.3 kW of power;evaporator pressure and mass a) evaporator pressure and mass flow of R134a b) heating load and COP value c) Calculate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT