Question

Part C - Maximum shear flow in the channel

Determine the maximum shear flow, qmax

, experienced by the channel.

Express your answer to five significant figures and include the appropriate units.

Review Learning Goal: To determine the maximum shear flow in a thin-walled member that is subjected to a vertical shear forceC N

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution: Shear flow (q) = txt aris off shear stress > where ti the thickness at Here t = qb= 2x 60 - 120 mm > so 1st you hav- Omare (above on on below meu prolaris), about = moment of area neutral anis » Omare = 2 xbox 195x195 = 2281560 mm 3 2 v oma

Add a comment
Know the answer?
Add Answer to:
Part C - Maximum shear flow in the channel Determine the maximum shear flow, qmax ,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Learning Goal: To determine the maximum shear force that can be applied to two shafts of...

    Learning Goal: To determine the maximum shear force that can be applied to two shafts of varying cross sections: a solid square shaft and a hollow square shaft. The two square cross sections shown below (Figure 1) are each subjected to a vertical shear force, V. The side length of each cross section is s = 6.00 in and the side length of the hollowed- out portion of the second cross section is r = 2.25 in. The maximum allowable...

  • u Review Part B - Calculate the moment of inertia Learning Goal: To find the centroid...

    u Review Part B - Calculate the moment of inertia Learning Goal: To find the centroid and moment of inertia of an I-beam's cross section, and to use the flexure formula to find the stress at a point on the cross section due to an internal bending moment. Once the position of the centroid is known, the moment of inertia can be calculated. What is the moment of inertia of the section for bending around the z-axis? Express your answer...

  • To determine the maximum shear force that can be applied to two shafts of varying cross sections: a solid square shaft and a hollow square shaft.

     Learning Goal: To determine the maximum shear force that can be applied to two shafts of varying cross sections: a solid square shaft and a hollow square shaft. The two square cross sections shown below (Figure 1) are each subjected to a vertical shear force, V. The side length of each cross section is s = 6.75 in and the side length of the hollowed-out portion of the second cross section is r = 4.00 in. The maximum allowable shear stress in...

  • Part A - Moment about the x axis at A Learning Goal: To determine the state...

    Part A - Moment about the x axis at A Learning Goal: To determine the state of stress in a solid rod using the principle of superposition. A solid rod has a diameter of e = 60 mm and is subjected to the loading shown. Let a = 200 mm, b = 220 mm c = 340 mm, d = 230 mm, and P = 4.0 kN. Take point A to be at the top of the circular cross-section. (Figure...

  • Part B?? An l-beam has a flange width b-250 mm , height h = 250 mm...

    Part B?? An l-beam has a flange width b-250 mm , height h = 250 mm , web thickness tw-9 mm , and flange thickness tf = 14 mm . Use the following steps to calculate the shear flow at the point shown, where z = 80 mm Learning Goal: To calculate the shear flow at a point in the flange of an I-beam section subject to a shear force. A thin-walled structure is one where the wall thickness is...

  • To analyze two built-up members that have the same geometry but are fastened differently, determine the...

    To analyze two built-up members that have the same geometry but are fastened differently, determine the maximum applicable shear force on each cross section, and determine the adjustment in spacing between the weaker member’s fasteners that would allow the member to support the equivalent maximum shear force of the stronger member. The two cross sections shown below, (a) and (b), are subjected to a vertical shear force as shown. The members are fastened by nails that can support a load...

  • Take that a (Figure 1) 50 mm Part A Determine the distance to the centroid of...

    Take that a (Figure 1) 50 mm Part A Determine the distance to the centroid of the beam's cross-sectional area Express your answer to three significant figures and include the appropriate units z= | Value | Units | Submit Request Answer Part B Find the moment of inertia about the y axis. Express your answer to three significant figures and include the appropriate units LA IValue Units Figure 1 of 1 Submit Request Answer < Return to Assignment Provide Feedback

  • Please be sure that your answer is correct A channel-shaped cross-section is subjected to a vertical...

    Please be sure that your answer is correct A channel-shaped cross-section is subjected to a vertical shear force of 40 kN as shown below. The neutral axis is located 71.5 mm from the bottom of the cross-section. Determine the magnitude of the maximum shear stress in the cross-section Answer: tmax= 10 95 V-40 KN 140m 10 mm 10

  • An I-beam has a flange width b = 200 mm , height h = 200 mm , web thickness tw = 8 mm , and flange thickness tf = 12 mm...

    An I-beam has a flange width b = 200 mm , height h = 200 mm , web thickness tw = 8 mm , and flange thickness tf = 12 mm . Use the following steps to calculate the shear stress at a point 65 mm above the neutral axis. Part A - Moment of inertia The shear formula includes the moment of inertia of the whole cross section, I, about the neutral axis. Calculate the moment of inertia. Express...

  • The two cross sections shown below, (a) and (b), are subjected to a vertical shear force...

    The two cross sections shown below, (a) and (b), are subjected to a vertical shear force as shown. The members are fastened by nails that can support a load of 21.00 kN each and are spaced perpendicularly to the page in increments of s = 105.0 mm. The geometries of the cross sections are given by a = 250.0 mm, b = 50.00 mm, c = 255.0 mm, d = 150 mm, and e = 305 mm Assume the cross...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT