Question

if possible early, thank you

Question # 1 (20%) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K an

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given, xlitrogen expands in a Turbine mars flow Rate of Nitrogen in 0.17 kg/s Condition of Nitrogen at Turbine Inlet Pressure+ > [ 2-T [0.191.039/323-580+ 38 * J.039/323 Q -7.394 kW -ve Amount of Meat transfor. = 7.394 KW (2) To Determine Heat is Add

Add a comment
Know the answer?
Add Answer to:
if possible early, thank you Question # 1 (20%) Nitrogen expands in a turbine at a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Question # 1 (20%) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The...

    Question # 1 (20%) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 12% 2. Determine if the heat is added to the system or lost from the system. 4% 3....

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 i/Kg.k 1. Calculate the amount of heat transfer. 12% 2. Determine if the heat is added to the system or lost from the system. 4% 3. Plot the TV diagram...

  • 1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the...

    1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k - Calculate the amount of heat transfer. Determine if the heat is added to the system or lost from the system. - Plot the TV diagram showing all...

  • 1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the...

    1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k - Calculate the amount of heat transfer. Determine if the heat is added to the system or lost from the system. - Plot the TV diagram showing all...

  • 1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the...

    1.) Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039j/Kg.k - Calculate the amount of heat transfer. Determine if the heat is added to the system or lost from the system. Plot the TV diagram showing all the states...

  • Air enters the compressor of a gas-turbine engine at 51 kg/min at 128 kPa and 316...

    Air enters the compressor of a gas-turbine engine at 51 kg/min at 128 kPa and 316 K and exits at 722 kPa and 555 K. Heat is lost from the compressor at 13 kJ/kg. Determine the power input (in kW to 1 decimal place) required assuming that kinetic energy can be neglected. Take the specific heat of air to be 1.05 kJ/kg.K.

  • Question 11 1 pts Air enters an insulated turbine operating at steady state at 500 kPa,...

    Question 11 1 pts Air enters an insulated turbine operating at steady state at 500 kPa, 607 °C and exits at 100 kPa, 297°Neglecting kinetic and potential energy changes, the work developed per kilogram of air, in kJ/kg. flowing through the turbine is most nearly (Assume co - 1.003 kJ/kg K.-0.716k/kgk and R-0.287 KJ/Kg.K) 4283 3211 2934 1245 934 311 145 675

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT