Question

Air enters the compressor of a gas-turbine engine at 51 kg/min at 128 kPa and 316...

Air enters the compressor of a gas-turbine engine at 51 kg/min at 128 kPa and 316 K and exits at 722 kPa and 555 K. Heat is lost from the compressor at 13 kJ/kg. Determine the power input (in kW to 1 decimal place) required assuming that kinetic energy can be neglected. Take the specific heat of air to be 1.05 kJ/kg.K.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

out wJ ol-

Add a comment
Know the answer?
Add Answer to:
Air enters the compressor of a gas-turbine engine at 51 kg/min at 128 kPa and 316...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Air enters the compressor of a regenerative gas turbine engine at 310 K and 100...

    2. Air enters the compressor of a regenerative gas turbine engine at 310 K and 100 kPa, where it is compressed to 900 kPa and 650 K. The regenerator has an effectiveness of 80%and the air enters the turbine at 1400 K. For a turbine isentropic efficiency of 90%, , then: (a) Sketch the T-s diagram of the cycle. (b) Determine the amount of heat transfer in the regenerator (c) Calculate the thermal efficiency of the cycle (d) Determine the...

  • A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300...

    A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300 K and discharges it at 400 kPa and 500 K. The velocity of the compressor's outgoing air is 100 m / s. Ignoring the speed at the compressor inlet. Determine the power required to drive the compressor, in kW, if the mass flow is 15 kg / s. Take the Cp of air equal to 1 kJ / (kg K) and assume that there...

  • Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as...

    Q.4 Air at 26 kPa,230 K, and 220 m/s enters a turbojet engine in flight as shown below. The mass flow rate of air is 25 kg/s, the compression pressure ratio is 11, inlet temperature to the turbine is 1400 K, and air exits the nozzle at 26 kPa. The diffuser and nozzle processes are isentropic, but the compressor and turbine have isentropic efficiencies of 85 and 90 percent, respectively and there is no pressure drop for flow through the...

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 j/Kg.k 1. Calculate the amount of heat transfer. 2. Determine if the heat is added to the system or lost from the system. 3. Plot the TV diagram showing all...

  • Is this process possible and why? 73 Air at 500 kPa, 980 K enters a turbine...

    Is this process possible and why? 73 Air at 500 kPa, 980 K enters a turbine operating at steady state and exits at 200 kPa, 680 K. Heat transfer from the turbine occurs at an average outer surface temperature of 320 K at the rate of 40 kJ per kg of air flowing. Kinetic and potential energy effects are negligible. For air as an ideal gas with c, 1.5 kJ/kg K, determine (a) the rate power is developed in kJ...

  • Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K,...

    Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow rate is 5.5 kg/s, and the power developed is 1200 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Assuming k = 1.4, determine: (a) the temperature of the air at the turbine exit, in K. (b) the percent isentropic turbine efficiency.

  • Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine...

    Nitrogen expands in a turbine at a rate of 0.17 kg/s. The nitrogen enters the turbine at 750 kPa, 580 K and it exits at 195 kPa, 323 K. The power delivered by the turbine is measured to 38 kW. Neglect potential and kinetic energies. For Nitrogen, Cp = 1039 i/Kg.k 1. Calculate the amount of heat transfer. 12% 2. Determine if the heat is added to the system or lost from the system. 4% 3. Plot the TV diagram...

  • Air enters a compressor at 152 kPa and 290 K and exits at a temperature of...

    Air enters a compressor at 152 kPa and 290 K and exits at a temperature of 507.4 K. Determine the power (kW) for the compressor if the inlet volumetric flow rate is 0.139 m/s and the heat transfer through the shell of the compressor to the surroundings is 1.31 kW. Use the ideal gas tables (variable specific heats).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT