Question

A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300...

A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300 K and discharges it at 400 kPa and 500 K. The velocity of the compressor's outgoing air is 100 m / s. Ignoring the speed at the compressor inlet. 
Determine the power required to drive the compressor, in kW, if the mass flow is 15 kg / s.
Take the Cp of air equal to 1 kJ / (kg K) and assume that there is no heat transfer from the compressor to the surroundings.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

by steady flow energy equation

m(h1+V12/2000+gz1/1000)+Q= W +m(h2+V22/2000+gz2/1000)

m=mass flow rate

h=specific enthalpy in KJ/kg

V =velocity in m/s

z1 = height in m

Q = heat transfer in KW

W =Work transfer in KW

h=cp*T

now V1=0 gz1=gz2 Q=0(insulated)

so W = m(h1-h2-V22/2000)

=15*(1*(500-300)-1002/2000)

W=-2925 KW Ans

negative sign indicates work input to compressor

Add a comment
Know the answer?
Add Answer to:
A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for...

    A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency. --Given Values--...

  • A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy...

    A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency....

  • WGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor ...

    wGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor Pi 100 kPa Regenerator Evaporator Turbine Generator Vapor turbine cycde (VTC) T, = T, + 20 K Condenser 10 Pump Saturated liquid A combined cycle plant operates with a topping gas turbine and a bottoming vapor turbine cycle. The working fluid in the vapor turbine cycle is water. The gas turbine cycle (GTC) electric generator produces 100kW of electric power For air use...

  • Air enters the compressor of a gas-turbine engine at 51 kg/min at 128 kPa and 316...

    Air enters the compressor of a gas-turbine engine at 51 kg/min at 128 kPa and 316 K and exits at 722 kPa and 555 K. Heat is lost from the compressor at 13 kJ/kg. Determine the power input (in kW to 1 decimal place) required assuming that kinetic energy can be neglected. Take the specific heat of air to be 1.05 kJ/kg.K.

  • A gas turbine receives air at temperature T1 = 827 °C and specific volume v, -0.1...

    A gas turbine receives air at temperature T1 = 827 °C and specific volume v, -0.1 m®/kg. Air exits the turbine at P2 = 3 bar and T2 = 450 °C. The volumetric flow rate of air at the inlet is 0.5 m/s. The power output on the shaft is 1900 kW. Determine: The pressure of air at the inlet (pa) in kPa [2 marks] b) The mass flow rate in kg/s [1 mark] c) Find the rate of heat...

  • Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature...

    Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature of 290 K, and with a mass flow rate of 0.72 kg/s. At the exit, the pressure is 700 kPa and the temperature is 450 K. Heat transfer from the compressor to its surroundings occurs at a rate of 3 kW. Kinetic and potential energy changes can be ignored. Determine the power input to the compressor, in kW. Assume that the air is an...

  • Air enters a compressor at 152 kPa and 290 K and exits at a temperature of...

    Air enters a compressor at 152 kPa and 290 K and exits at a temperature of 507.4 K. Determine the power (kW) for the compressor if the inlet volumetric flow rate is 0.139 m/s and the heat transfer through the shell of the compressor to the surroundings is 1.31 kW. Use the ideal gas tables (variable specific heats).

  • 2. Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K,...

    2. Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetnc flow rate of 20 m'/s. The turbine inlet temperature is 1500 K. For compressor pressure ratios of 20 find a) the heat addition and rejection in kW b) the net power developed, in kW c) the thermal efficiency of the cycle d) the back work ratio.

  • 2. Air enters the compressor of a regenerative gas turbine engine at 310 K and 100...

    2. Air enters the compressor of a regenerative gas turbine engine at 310 K and 100 kPa, where it is compressed to 900 kPa and 650 K. The regenerator has an effectiveness of 80%and the air enters the turbine at 1400 K. For a turbine isentropic efficiency of 90%, , then: (a) Sketch the T-s diagram of the cycle. (b) Determine the amount of heat transfer in the regenerator (c) Calculate the thermal efficiency of the cycle (d) Determine the...

  • Air enters the compressor of a cold air-standard Brayton cycle at 100 kpa, 300 k, with...

    Air enters the compressor of a cold air-standard Brayton cycle at 100 kpa, 300 k, with a mass flow rate of 6 kg/s. the compressor pressure ratio is 10, and the turbine inlet temperature is 1400 K. For k = 1.4, calculate a. The thermal efficiency of the cycle b. The back work ratio c. The net power developed, in kW d. Reconsider the above with an ideal regenerator.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT