Question

A gas turbine receives air at temperature T1 = 827 °C and specific volume v, -0.1 m®/kg. Air exits the turbine at P2 = 3 bar

0 0
Add a comment Improve this question Transcribed image text
Answer #1

u 0.5m3s 0.5 5kg/s w=1900 kwall S=1 L 0.1 C To 773K Soln Volume flow rate 0.1 mi 2/16g b) mass flow rale m from gass egn P =

Add a comment
Know the answer?
Add Answer to:
A gas turbine receives air at temperature T1 = 827 °C and specific volume v, -0.1...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air expands through a turbine from 8 bar, 960 K to 1 bar, 450 K. The...

    Air expands through a turbine from 8 bar, 960 K to 1 bar, 450 K. The inlet velocity is small compared to the exit velocity of 90 m/s. The turbine operates at steady state and develops a power output of 2500 kW. Heat transfer between the turbine and its surroundings and potential energy effects are negligible. Modeling air as an ideal gas, calculate the mass flow rate of air, in kg/s, and the exit area, in m2.

  • A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300...

    A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300 K and discharges it at 400 kPa and 500 K. The velocity of the compressor's outgoing air is 100 m / s. Ignoring the speed at the compressor inlet. Determine the power required to drive the compressor, in kW, if the mass flow is 15 kg / s. Take the Cp of air equal to 1 kJ / (kg K) and assume that there...

  • Problem 6.055 SI Water at P1 = 20 bar, T1 = 400°C enters a turbine operating...

    Problem 6.055 SI Water at P1 = 20 bar, T1 = 400°C enters a turbine operating at steady state and exits at P2 = 1.5 bar, T2 = 230°C. The water mass flow rate is 4000 kg/hour. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power produced by the turbine, in kW, and the rate of entropy production in the turbine, in kW/K. Step 1 Determine the power produced by the turbine, in kW. W,...

  • A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for...

    A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency. --Given Values--...

  • WGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor ...

    wGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor Pi 100 kPa Regenerator Evaporator Turbine Generator Vapor turbine cycde (VTC) T, = T, + 20 K Condenser 10 Pump Saturated liquid A combined cycle plant operates with a topping gas turbine and a bottoming vapor turbine cycle. The working fluid in the vapor turbine cycle is water. The gas turbine cycle (GTC) electric generator produces 100kW of electric power For air use...

  • Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and po...

    Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and potential energy effects can be ignored. Determine the followings. (a) (5 points) The rate of heat transfer, in kW. (b) (15 points) The rate of entropy production, in kW/K, for an enlarged control volume that includes the turbine and enough of...

  • A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy...

    A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency....

  • d باور Example: In the gas turbine unit, the gas flow through the turbine at 17...

    d باور Example: In the gas turbine unit, the gas flow through the turbine at 17 kg/s and the power developed by the turbine is 1400 kW. The enthalpies of the gas at inlet and outlet → 321 are 1200 kj/kg and 300 kJ/kgʻrespectively, and the velocities of gases inlet and outlet are 60 m/s and 150 m/s respectively. Calculate the rate of heat rejected from turbine and also the area of the inlet pipe given that the specific volume...

  • A micro hydro turbine is used to generate hydroelectric power by letting liquid water from a...

    A micro hydro turbine is used to generate hydroelectric power by letting liquid water from a high elevation run through the turbine to a low elevation. The turbine is under a steady state operation condition. The inlet water and outlet water are at elevations of 10 m and 2 m, respectively. The inlet and outlet diameters are 0.3 m and 0.5 m, respectively. The inlet pressure is 2.5 bar and the outlet pressure 1 bar. The inlet and outlet temperatures...

  • Air enters a turbine in steady flow at 600 kPa, 740 K, and 120 m/s. The...

    Air enters a turbine in steady flow at 600 kPa, 740 K, and 120 m/s. The exit conditions are 100 kPa, 450 K, and 220 m/s. A heat loss of 15 kJ/kg occurs, and the inlet area is 4.91 cm2 . Determine (a) the kinetic-energy change, in kJ/kg, (b) the power output, in kW, and (c) the ratio of the inlet- to outletpipe diameters

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT