Question

Problem 31 mi ma Two blocks ma = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massles

0 0
Add a comment Improve this question Transcribed image text
Answer #1

m, Tz f f 13 0-55% V= utat = 0+ 3.46 X2 = 6.92 m/s. Ti MIR Ra=a x =) T2-T, = ma T- Mix 0 +2 +6 C) a = g/m₂ sino - lik m₂ W5ofrom ein ③ a Tizmi [atlxg] 4[3.46+ 0-159.81] = 19,726N T2 = Tit +ma/ = 19.726+ 8x 3.46 2 33.566 N

Add a comment
Know the answer?
Add Answer to:
Problem 31 mi ma Two blocks ma = 4 kg and m2 = 9 kg are...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem #1 mi m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 mi m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction ulk = 0.15. The incline is at the angle 0...

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction x = 0.15. The incline is at the angle =...

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction ulk = 0.15. The incline is at the angle o...

  • Two blocks with masses Mi and M2 are connected by a massless string that passes over...

    Two blocks with masses Mi and M2 are connected by a massless string that passes over a massless pulley as shown. Mi has a mass of 2.25 kg and is on an incline of o, 49.5, with coefficient of kinetic friction μί-0205. M2 has a mass of 6.85 kg and is on an incline of Oz 35.5. with coefficient of kinetic friction μ,-0.105. Find the magnitude of the acceleration of M2 down the incline magnitude of M2 m/s Figure is...

  • Two blocks m1=8.1 kg and mass m2 are connected by a massless cord over a massless...

    Two blocks m1=8.1 kg and mass m2 are connected by a massless cord over a massless pulley as shown below. the block of mass m2 is placed on a rough inclined surface at an angle (theta = 55) Two blocks my = 8.1 kg and mass m2 are connected by a massless cord over a massless pulley as shown below. The block of mass mz is placed on a rough inclined surface at an angle = 55°, and a force...

  • Two blocks A and B with mA = 1.3 kg and mg = 0.88 kg are...

    Two blocks A and B with mA = 1.3 kg and mg = 0.88 kg are connected by a string of negligible mass. They rest on a frictionless horizontal surface. You pull on block A with a horizontal force of 7.6 N. (a) Find the magnitude of the acceleration (in m/s2) of the blocks. O m/s2 (b) Determine the tension in N) in the string connecting the two blocks. ON (c) How will the tension in the string be affected...

  • 1) Figure 1 illustrates first and second blocks having respective masses Mi and M2. An ideal...

    1) Figure 1 illustrates first and second blocks having respective masses Mi and M2. An ideal horizontal rope is connected between the blocks and both blocks are positioned on a horizontal smooth surface (i.e. no friction force is applied by the smooth surface onto either block). A horizontal pulling force having magnitude Fp is applied by an external agent onto the first block horizontally toward the left, which causes the 2-block system to speed up while traveling toward the left....

  • Two blocks are connected by a massless rope.

    Two blocks are connected by a massless rope. The rope passes over an ideal (frictionless and massless) pulley such that one block with mass m1=13.75 kg is on a horizontal table and the other block with mass m2=6.5 kg hangs vertically. Both blocks experience gravity and the tension force, T. Use the coordinate system specified in the diagram. Part (a) Assuming friction forces are negligible, write an expression, using only the variables provided, for the acceleration that the block of mass...

  • 4. A bucket with mass m2 = 5 kg and a block with mass mi-15 kg...

    4. A bucket with mass m2 = 5 kg and a block with mass mi-15 kg are hung on system. Find the magnitude of the acceleration with which the bucket and the block are moving and the magnitude of the tension force T by which the rope is stressed more masses of the pulley system and the rope. The bucket moves up and the blocsma down. Show all your work, and use as and as for the acceleration of the...

  • Problem 3. (4.0 pts.) Two blocks of masses mi = 1.35 kg and m2 = 1.27...

    Problem 3. (4.0 pts.) Two blocks of masses mi = 1.35 kg and m2 = 1.27 kg are connected through a pulley so that one of the blocks is hanging freely and the other one is located on the horizontal plane, as shown in Fig. 1. The friction coefficient for the first block is jis = 0.37. The system is released and block m; goes down by d = 43.2 cm. (a) Find the acceleration of the blocks. (6) What...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT