Question

3 points Save Answer You pour 130 [g] of boiling water to a calorimeter made up of a material X with a specific heat of Cx= 1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

lef equillibrium temperature =T Heat lost by boiling water = mw era tu Q = 130x 4.18X (100-T) T Heat reciered calorimeter M.

Add a comment
Know the answer?
Add Answer to:
3 points Save Answer You pour 130 [g] of boiling water to a calorimeter made up...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 9. 100-g aluminum calorimeter contains 250-g of water. The two substances are in thermal equilibrium at...

    9. 100-g aluminum calorimeter contains 250-g of water. The two substances are in thermal equilibrium at 10° C. Two metallic blocks are placed in the water. One is a 50- piece of copper at 80° C. The other sample has a mass of 70-g and is originally at temperature of 100° C. The entire system stabilizes at a final temperature of 200 C. Determine the specific heat of the unknown second sample. (Assume the specific heat of aluminum, and copper...

  • Problem 5: A 95-g aluminum calorimeter contains 241 g of water. The aluminum and water are...

    Problem 5: A 95-g aluminum calorimeter contains 241 g of water. The aluminum and water are initially in thermal equilibrium at a temperature of 9.3°C. Two solid objects are then placed in the water. One is a 50.3-g piece of copper with a specific heat of 390 J/(kg:°C) and an initial temperature of 81.2°C. The other is of unknown material with a mass of 69 g and an initial temperature of 100°C. The entire system reaches thermal equilibrium at a...

  • An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter...

    An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal equilibrium at 10°C. Two metallic blocks are placed into the water. One is a 51.0-g piece of copper at 80°C. The other has a mass of 544 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. (a) Determine the specific heat of the unknown sample. (J/Kg*C) (b) Using the...

  • An aluminum calorimeter with a mass of 425.00 g contains 1062.50 g of water. The calorimeter...

    An aluminum calorimeter with a mass of 425.00 g contains 1062.50 g of water. The calorimeter and water are in thermal equilibrium at 12.50 ° C. Two metal blocks are placed in the water. One is a piece of copper from 212.50 g to 85.00 ° C. The other has a mass of 202.50 g and is originally at a temperature of 105.00 ° C. The entire system is stabilized at a final temperature of 22.50 ° C. (a) Determine...

  • 1 A173.0g lead ball at 155°C is dropped into a calorimeter cup containing 210 g of...

    1 A173.0g lead ball at 155°C is dropped into a calorimeter cup containing 210 g of water at 16.0°c. After equilibrium is reached, the temperature of water is increased to 18.2°C. What is the heat capacity of calorimeter? Assume that calorimeter and water are initially at the same temperature. (Specific heat of water is 4186 J/kg. C and specific heat of lead is 128 J/kg.C) 2. An unknown metal sample of 54 g at 108°C is dropped into a calorimeter...

  • An Mm = 39 grams sample of a metallic cylinder is heated to a temperature of...

    An Mm = 39 grams sample of a metallic cylinder is heated to a temperature of Tm = 89 °C. It is placed in Mw = 171 grams of water in a calorimeter cup with a specific heat of Ccal = 0.179 cal/g Cº. The mass of the calorimeter cup is Mcal = 41.8 grams. The initial temperature of the water and calorimeter cup is T. = 20.3 °C. The final equilibrium temperature of the system is Te = 23.4...

  • Calculating specific heat capacity A constant-pressure calorimeter is often used to find the specific heat capacity...

    Calculating specific heat capacity A constant-pressure calorimeter is often used to find the specific heat capacity of a substance if it is not known. A known mass of the substance can be heated and added to water of known mass and initial temperature. Since the specific heat capacity of water is known ( C s,water =4.184J/(g⋅ ∘ C)) , the amount of heat transferred to the water can be calculated by measuring the final temperature of the mixture at thermal...

  • A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal...

    A 100 g aluminum calorimeter contains 250 g of water. The two substances are in thermal equilibrium at 10°C. Two metallic blacks are placed in water. One is a 50 gram piece of copper at 82°C. The other sample has a mass of 57 g and is originally at a temperature of 100°C. The entire system stabilizes at a final temperature of 20°C. Determine the specific heat of the unknown second sample. A 100 g aluminum calorimeter contains 250 g...

  • 1) An aluminum calorimeter of mass 58 g, has 155 g water, both at a temperature...

    1) An aluminum calorimeter of mass 58 g, has 155 g water, both at a temperature of 21°C. A 108-g piece of metal originally kept in boiling water (T = 100°C) is transferred to the calorimeter. The final equilibrium temperature of the mixture is 26.6°C. Calculate the specific heat of the metal (in J/kg). Specific Heats: Al = 900 J/kg, water =4186 J/g 2) How much heat, in kilo-joules, is required to convert 19 g of ice at -13°C into...

  • The specific heat of a 108 g block of material is to be determined. The block...

    The specific heat of a 108 g block of material is to be determined. The block is placed in a 25 g copper calorimeter that also holds 60 g of water. The system is initially at 20°C. Then 113 mL of water at 80°C are added to the calorimeter vessel. When thermal equilibrium is attained, the temperature of the water is 54°C. Determine the specific heat of the block.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT