Question

1 A173.0g lead ball at 155°C is dropped into a calorimeter cup containing 210 g of water at 16.0°c. After equilibrium is reac
0 0
Add a comment Improve this question Transcribed image text
Answer #1

5) het capacity of calorimeter 2 Heat lost by lead Heat B Heat *173 X128 * (155-18.2) = be Hi gained by water + gained by cal

Add a comment
Know the answer?
Add Answer to:
1 A173.0g lead ball at 155°C is dropped into a calorimeter cup containing 210 g of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An unknown metal sample of 54 g at 108°C is dropped into a calorimeter cup containing...

    An unknown metal sample of 54 g at 108°C is dropped into a calorimeter cup containing 190 g of 2. water at 20.3°c. After equilibrium is reached, the temperature of water is increased to 24.6°C. What is the specific heat of this metal? identify the metal by looking up the specific heat table. (Specific heat of water is 4186 J/kg.°C and heat capacity of the calorimeter is 125 J/oC)

  • A 25.0-g block of ice at -15.00°C is dropped into a calorimeter (of negligible heat capacity)...

    A 25.0-g block of ice at -15.00°C is dropped into a calorimeter (of negligible heat capacity) containing water at 15.00°C. When equilibrium is reached, the final temperature is 8.00°C. How much water did the calorimeter contain initially? The specific heat of ice is 2090 J/kg ∙ K, that of water is 4186 J/kg ∙ K, and the latent heat of fusion of water is 33.5 × 104 J/kg.

  • A piece of copper metal is initially at 83.0°C. It is dropped into a coffee cup...

    A piece of copper metal is initially at 83.0°C. It is dropped into a coffee cup calorimeter containing 30.0 9 of water at a temperature of 10.0°c. After stirring, the final temperature of both copper and water is 25.0°c. Assuming no heat losses, and that the specific heat (capacity) of water is 4.18 J/(g.), what is the heat capacity of the copper in J/K?

  • A 329-g piece of metal at 120°C is dropped into a cup containing 460 g of...

    A 329-g piece of metal at 120°C is dropped into a cup containing 460 g of water at 7°C. The final temperature of the system is measured to be 34°C. What is the specific heat of the metal, assuming no heat is exchanged with the surroundings or the cup? The specific heat of water is 4190 J/(kg∙K). Answer in two decimal places.

  • A 10.95 g sample of lead at 88.0°C was placed into a styrofoam cup calorimeter which...

    A 10.95 g sample of lead at 88.0°C was placed into a styrofoam cup calorimeter which contained 15 mL of water at 22.0°C. The final temperature in the calorimeter reached 23.5°C. Calculate the specific heat of lead. The specific heat of water is 4.184 J/g°C.

  • 1) An aluminum calorimeter of mass 58 g, has 155 g water, both at a temperature...

    1) An aluminum calorimeter of mass 58 g, has 155 g water, both at a temperature of 21°C. A 108-g piece of metal originally kept in boiling water (T = 100°C) is transferred to the calorimeter. The final equilibrium temperature of the mixture is 26.6°C. Calculate the specific heat of the metal (in J/kg). Specific Heats: Al = 900 J/kg, water =4186 J/g 2) How much heat, in kilo-joules, is required to convert 19 g of ice at -13°C into...

  • > PROBLEM-SOLVING CLASS ACTIVITY 3 A 26.5 g piece of lead, heated to 90.0°C, is dropped...

    > PROBLEM-SOLVING CLASS ACTIVITY 3 A 26.5 g piece of lead, heated to 90.0°C, is dropped into a coffee-cup calorimeter containing 100,0 mL of water at 22.5°C. The final temperature of the metal and the water is 23.2°C. What is the specific heat of lead? The density of water is 1.00 g/mL.

  • A 229.0 g piece of lead is heated to 84.0oC and then dropped into a calorimeter...

    A 229.0 g piece of lead is heated to 84.0oC and then dropped into a calorimeter containing 526.0 g of water that initally is at 15.0oC. Neglecting the heat capacity of the container, find the final equilibrium temperature (in oC) of the lead and water.

  • In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently use...

    In the laboratory a "coffee cup" calorimeter, or constant pressure calorimeter, is frequently used to determine the specific heat of a solid, or to measure the energy of a solutiorn phase reaction. Thermometer Stirring rod A student heats 63.92 grams of iron to 98.03 °C and then drops it into a cup containing 75.92 grams of water at 24.47 °C. She measures the final temperature to be 30.66 °C The heat capacity of the calorimeter (sometimes referred to as the...

  • A 20-g ice cube floats in 210 g of water in a 100-g copper cup; all...

    A 20-g ice cube floats in 210 g of water in a 100-g copper cup; all are at a temperature of 0°C. A piece of lead at 92°C is dropped into the cup, and the final equilibrium temperature is 12°C. What is the mass of the lead? (The heat of fusion and specific heat of water are 3.33 105 J/kg and 4,186 J/kg · °C, respectively. The specific heat of lead and copper are 128 and 387 J/kg · °C,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT