Question

4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, P

0 0
Add a comment Improve this question Transcribed image text
Answer #1

0:1 Air Patu+ 755 mmHg water TV Hg Data h = 0,2m Pwater = 1000 ug/m² Yoil hz=0,3m Soil = 0,85 water h₂= 0,45m S Hg = 13,6 Pwa

Add a comment
Know the answer?
Add Answer to:
4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A two-liquid pressure gauge is connected to a tank filled with water. In the environment where...

    A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg / m³, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yag h1 h3 su h2 civa

  • 4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment...

    4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg/m, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yag hl h3 su h2 civa

  • 4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment...

    4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg / m', the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yag hi h3 su h2...

  • 4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment...

    4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg / m?, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yag h1 h3 h2 civa

  • 4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment...

    4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg/m?, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yağ h1 h3 su h2 civa

  • 4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment...

    4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is h1 = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg/m, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of the air inside the tank. hava yağ hi h3 su h2 civa

  • SU = WATER , YAĞ = OIL , CIVA = Mercury 4. A two-liquid pressure gauge...

    SU = WATER , YAĞ = OIL , CIVA = Mercury 4. A two-liquid pressure gauge is connected to a tank filled with water. In the environment where the warehouse is located, Patm = 755 mmHgS. The height of the liquids is hl = 0.2m h2 = 0.3m h3 = 0.45m and the density of the water is 1000kg / m³, the density of the oil is 0.85 and the density of the mercury is 13.6. Calculate the pressure of...

  • QUESTIONS 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at...

    QUESTIONS 1. Refrigerant-134a is cooled by water in a condenser. The refrigerant enters the condenser at a pressure of 1 MPa and a temperature of 70°C at a flow rate of 6 kg / min and exits at a temperature of 35 °C. Cooling water enters the condenser at 300 kPa pressure and 15 °C temperature and exits at 25 °C temperature. By neglecting pressure losses, Calculate; a) mass flow of cooling water b) the heat transfer from the refrigerant...

  • The water in a tank is pressurized by air, and the pressure is measured by a...

    The water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer as shown in Figure 1. Determine the gage pressure of air in the tank if h1=26cm, h2=45cm, and h3-58cm. The specific gravity of mercury and oil are given to be 13.6 and 0.85 respectively. AIR WATER Mercury Figure 1

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT