Question

Consider the steady, incompressible flow of depth h of a liquid of known density ρ and unknown viscosity µ down a flat plate as shown in Figure 1. Air is the fluid above the liquid layer. The force of gravity is in the vertical direction with acceleration g, and the plate is at an angle θ with respect to the horizontal. Assuming the coordinate system as shown, with x aligned with the flow direction, and y normal to the plate, assume that the flow properties are independent of the z-direction. Furthermore, assume that the flow is fully-developed, so that it is independent of x.

ls air liquid се Figure 1: Flow of a liquid down a flat plate The exact solution to this problem is known to be: where U is the peak velocity, occurring at y- h. The boundary conditions for this problem are: #21(y) = 0 at y = 0 (no-slip) Tyz()0 at y (no-stress, assuming air imparts little viscous stress to the liquid) It is decided to use this simple setup to determine the viscosity of the liquid, μ, in terms of the other known parameters of the problem, ie., U, ρ, g, θ, and h. Ifp, g, θ and h are known, and then U is measured, then fu can be determined. (a) From the y-component of the momentum equation, show that the pressure in the liquid is given by: p(y)-Po + pg(h-y) cos independent of x. , where po is the constant ai r pressure above the liquid

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider the steady, incompressible flow of depth h of a liquid of known density ρ and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An important problem in chemical engineering separation equipment involves thin liquid films flow...

    An important problem in chemical engineering separation equipment involves thin liquid films flowing down vertical walls due to gravity, as shown in this figure yV A. Assume that the wall is long and wide compared to the film thickness, with steady flow that is laminar and fully developed: u= v=0 and w w(x). Using a force balance on a rectangular differential element, derive an expression relating g, p, and τΧΖ . Use τΧΖ-n(-_ +--) for a Newtonian fluid to convert...

  • 19 A vertical moving belt drags an incompressible liquid film of thickness h, density P, and...

    19 A vertical moving belt drags an incompressible liquid film of thickness h, density P, and viscosity , as shown. Gravity tends to make the liquid drain down, but the movement of the belt at speed U, keeps the liquid from running off completely. u Assume that the flow is full developed and stead. State the boundary conditions Write the continuity equation for the flow and solve for v, the horizontal component of velocity. Solve for the velocity profile u(y)...

  • A laminar flow of constant density and constant viscosity at steady state flows thought the two...

    A laminar flow of constant density and constant viscosity at steady state flows thought the two flat and parallel infinite plate. The upper plate is mowing while lower plate is stationary. The flow upper plate: moving is driven by the pressure gradient in the x direction. The velocity profile is desired to be derived for this system. Then - What are the correct answers? 20 lower plate: stationary ay c) PS, 0 200 b- Write the equation to find out...

  • Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity ...

    Problem 3- For flow of an incompressible, Newtonian fluids between parallel plates, the velocity distribution between the plate is given by 1 dP 2μ dr where y is the direction from one plate (y-0) to another (y-w),and x is the direction of flow a) What is the expression for the rate of deformation matrix? b) What is the expression for the stress matrix? c) At the center of the flow y w/2, what is the direction of internal forcing due...

  • Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite...

    Consider steady, incompressible, laminar flow of a Newtonian fluid in the narrow gap between two infinite parallel plates. The top plate is moving at speed V, and the bottom plate is moving in the opposite direction at speed V. The distance between these two plates is h, and gravity acts in the negative z-direction. There is no applied pressure other than hydrostatic pressure due to gravity. Calculate the velocity and estimate the shear stress acting on the bottom plate Moving...

  • fluid mechanics A steady, incompressible, and laminar flow of a fluid of viscosity u flows through...

    fluid mechanics A steady, incompressible, and laminar flow of a fluid of viscosity u flows through an inclined narrow gap of a crack in the wall of length L and a constant width W shown in Figure Q1(b). Assume that the gap has a constant thickness of 7. The fluid flows down the inclined gap at an angle and in the positive x-direction. No pressure gradient is applied throughout the flow but there is gravitational effect. Derive an expression for...

  • Consider the steady, laminar flow of two liquids, A and B, with viscosities HA-μ and μΒ...

    Consider the steady, laminar flow of two liquids, A and B, with viscosities HA-μ and μΒ 21, respectively, between infinite parallel plates at 2- a, as shown in the diagram below. The plate at 2 a is fixed, while the plate at 2a moves with constant velocity -Vi, where V0. The liquids do not mix, and each forms a layer of depth a. There is an applied pressure gradient acting on both liquids, given by ▽p--Ci (where C > 0...

  • 12. Consider steady, incompressible, parallel, laminar flow of a film of oil falling slowly down an...

    12. Consider steady, incompressible, parallel, laminar flow of a film of oil falling slowly down an infinite vertical wall as shown in the figure(Fig. P12a). The oil film thickness is h, and gravity acts in the negative z-direction (downward in the figure) There is no applied (forced) pressure driving the flow the oil falls by gravity alone. (1) Calculate the velocity field in the oi film and sketch the normalized velocity profile. And generate an expression for the volumetric flow...

  • An incompressible fluid flows between two porous, parallel flat plates as shown in the Figure below....

    An incompressible fluid flows between two porous, parallel flat plates as shown in the Figure below. An identical fluid is injected at a constant speed V through the bottom plate and simultaneously extracted from the upper plate at the same velocity. There is no gravity force in x and y directions (g-g,-0). Assume the flow to be steady, fully-developed, 2D, and the pressure gradient in the x direction to be a constant P = constant). (a) Write the continuity equation...

  • An important problem in chemical engineering separation equipment involves thin liquid films flowing down vertical walls...

    An important problem in chemical engineering separation equipment involves thin liquid films flowing down vertical walls due to gravity, as shown in this figure yV A. Assume that the wall is long and wide compared to the film thickness, with steady flow that is laminar and fully developed: u= v=0 and w w(x). Using a force balance on a rectangular differential element, derive an expression relating g, p, and τΧΖ . Use τΧΖ-n(-_ +--) for a Newtonian fluid to convert...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT