Question
if someone can help answer these questions
tion 18 O out of 4 points At the start of a reaction, there are 1.05 moles of NO, 0.955 moles of Bry, and 1.15 moles of NOBr
0 0
Add a comment Improve this question Transcribed image text
Answer #1

18 Given reaction is Kc = 0.013 2NO(g) +B7,49) Q NO BOLS) moles of NOS 1.05 mol moles of Br₂ = 0.955 mol moles of NOBT = 115Kes CH25) [H2] ?CS, 1.08x10? (3.15)? (2.25)x ($2] upon calculations, we get [S2] = 1.81 X10-7 M 00 Ginen reaction is 250, (9)Given, moles of o 03-0.344 mal moles of o₂ = 0.688 mol volume of containese = 6.5L Reaction is 20,69) 230,(9) By law of massHope you will like my answer:)

Add a comment
Know the answer?
Add Answer to:
if someone can help answer these questions tion 18 O out of 4 points At the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)?n where R=0.08206 L?atm/(K?mol), T is the absolute temperature, and ?n is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)?2NH3(g) for which ?n=2?(1+3)=?2. Part A For the reaction 3A(g)+3B(g)?C(g) Kc...

  • Please answer all six thanks 1) The equilibrium constant for the following reaction is 2.90×10-2 at...

    Please answer all six thanks 1) The equilibrium constant for the following reaction is 2.90×10-2 at 1.15×103K. 2SO3(g) ------------------->2SO2(g) + O2(g) If an equilibrium mixture of the three gases in a 17.3 L container at 1.15×103K contains 0.437 mol of SO3(g) and 0.422 mol of SO2, the equilibrium concentration of O2 is  M. 2) A student ran the following reaction in the laboratory at 1100 K: 2SO3(g) -------------------->2SO2(g) + O2(g) When she introduced 7.74×10-2 moles of SO3(g) into a 1.00 liter...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. A) For the reaction 3A(g)+3B(g)⇌C(g) Kc =...

  • 1- The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) -------->...

    1- The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) --------> H2(g) + I2(g)   Calculate the equilibrium concentrations of reactant and products when 0.395 moles of HI are introduced into a 1.00 L vessel at 698 K.   [HI] = M [H2] = M [I2] = M 2-  student ran the following reaction in the laboratory at 1090 K: 2SO3(g) ----------> 2SO2(g) + O2(g) When he introduced SO3(g) at a pressure of 1.05 atm into a 1.00...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. For the reaction 2A(g)+2B(g)⇌C(g) Kc = 80.2...

  • 1. The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of...

    1. The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. Part A For the reaction 3A(g)+2B(g)⇌C(g)...

  • can someone help me answer C? In an experiment conducted at 74°C, the equilibrium concentrations of...

    can someone help me answer C? In an experiment conducted at 74°C, the equilibrium concentrations of reactants and products for the equation shown below were [CO]- 1.2 x 102 M, [Cl2] 0.054 M and [COC2] 0.14 M. CO (g) + Cl2 (g) COCI2 (g) a) What is the equilibrium expression for this reaction? ke= [COCI2 CCOJ[CI b) Calculate the value of the equilibrium constant, Kc. Kc= (0.14] 1.2E-21[0.05 216- 220 Calculate the value of the equilibrium constant, Kp. c) kp...

  • 5. The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of...

    5. The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, KpKp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol)R=0.08206 L⋅atm/(K⋅mol), TT is the absolute temperature, and ΔnΔn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2 For the reaction 3A(g)+2B(g)⇌C(g) KcKc...

  • Chapter 15 Homework Pressure-Based versus Concentration-Based Equilibrium Constants 11 of 41 Review I Constants I Periodic...

    Chapter 15 Homework Pressure-Based versus Concentration-Based Equilibrium Constants 11 of 41 Review I Constants I Periodic Table The equilibrium constant, K is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Part A For the reaction 3A(g)3B(g)C(g) Kp = Kc(RT)^n Ke 68.8 ta temperature of 273 C where R 0.08206 L atm/(K.mol), T is the absolute temperature, and...

  • The following reaction was allowed to come to equilibrium at 35 degree C. The initial molar...

    The following reaction was allowed to come to equilibrium at 35 degree C. The initial molar concentration for SO_3 is 0.675 M ([SO_3| = 0.675 M) and the initial molar concentration for CO_2 is 0.444 M (|CO_2] = 0.444 M). After the reaction reached equilibrium the concentration of CO_2 now equals 0.214 M ((CO_2] = 0.214 M). What is the K_c value for the reaction? 0.00987 0.0342 7.31 11.8 16.7 At 35 degree C the equilibrium constant value (K_c) for...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT