Question

Two open-open pipes have lengths that differ by 1.00%. When both are struck, emitting sound at the fundamental frequency, a b
0 0
Add a comment Improve this question Transcribed image text
Answer #1

enda 1. Fundamental frequeney f- v Antinode at den En far Beat frequeny = of [d=all 2.5 = x - y ve speed of sound ) 2.5 = 343

Add a comment
Know the answer?
Add Answer to:
Two open-open pipes have lengths that differ by 1.00%. When both are struck, emitting sound at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • What is the beat frequency heard when two organ pipes, each open at both ends, are...

    What is the beat frequency heard when two organ pipes, each open at both ends, are sounded together at their fundamental frequencies if one pipe is 46 cm long and the other is 63 cm long? (the speed of sound is 340 m/s)

  • The figure shows the spectrum of sound that is produced by two pipes simultaneously vibrating with...

    The figure shows the spectrum of sound that is produced by two pipes simultaneously vibrating with their fundamental frequencies. Each pipe can be either an open-open or an open-closed pipe. Assume that the speed of sound in air is 340 m/s. f(Hz) 400 Part A Determine the possible lengths of the pipe with smaller frequency. Express your answers in meters separated by a comma OO 200 Hz VOC 200 Hz Submit Request Answer Part B Determine the possible lengths of...

  • A pipe open only at one end has a fundamental frequency of 254 Hz. A second...

    A pipe open only at one end has a fundamental frequency of 254 Hz. A second pipe, initially identical to the first pipe, is shortened by cutting off a portion of the open end. Now when both pipes vibrate at their fundamental frequencies, a beat frequency of 20 Hz is heard. How many centimeters were cut off the end of the second pipe? The speed of sound is 345 m/s.

  • A pipe open only at one end has a fundamental frequency of 240 Hz. A second...

    A pipe open only at one end has a fundamental frequency of 240 Hz. A second pipe, initially identical to the first pipe, is shortened by cutting off a portion of the open end. Now when both pipes vibrate at their fundamental frequencies, a beat frequency of 16 Hz is heard. How many centimeters were cut off the end of the second pipe? The speed of sound is 345 m/s.

  • A pipe open only at one end has a fundamental frequency of 240 Hz. A second...

    A pipe open only at one end has a fundamental frequency of 240 Hz. A second pipe, initially identical to the first pipe, is shortened by cutting off a portion of the open end. Now when both pipes vibrate at their fundamental frequencies, a beat frequency of 12 Hz is heard. How many centimeters were cut off the end of the second pipe? The speed of sound is 348 m/s.

  • You have pipes of various lengths and openings and want to select 2 pipes (1 open-open...

    You have pipes of various lengths and openings and want to select 2 pipes (1 open-open and 1 open-closed) so your 440 Hz tuning fork will vibrate both perfectly at their first resonant points. The speed of sound in air is 343 m/s. a) What are the lengths of each of these two pipes? b) Draw a picture of the wave in both pipes and clearly indicate the nodes and antinodes of the wave inside both pipes. c) How much...

  • You have pipes of various lengths and openings and want to select 2 pipes (1 open-open...

    You have pipes of various lengths and openings and want to select 2 pipes (1 open-open and 1 open-closed) so your 440 Hz tuning fork will vibrate both perfectly at their first resonant points. The speed of sound in air is 343 m/s. a) What are the lengths of each of these two pipes? b) Draw a picture of the wave in both pipes and clearly indicate the nodes and antinodes of the wave inside both pipes. 1 c) How...

  • 1) John is holding a tuning fork that is creating a 663-Hz sound. Jack holds an...

    1) John is holding a tuning fork that is creating a 663-Hz sound. Jack holds an identical tuning fork that is creating the same frequency sound. If John starts walking toward Jack at a speed of 3.81 m/s, what is the beat frequency detected by Jack? Answer in Hz 2)An organ player in a cathedral plays pipes X and Y, which are both open at both ends. Pipe X has a length of 0.823 m. They both vibrate at their...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz.    a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch write the wavelength for each pipe in terms of the pipe lengths LA...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz. a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch, write the wavelength for each pipe in terms of the pipe lengths LA and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT