Question


A sinusoidal electromagnetic wave in a vacuum is propagating in the positive y- direction. At a certain point in the wave at

A sinusoidal electromagnetic wave in a vacuum is propagating in the positive y-direction. At a certain point in the wave at a certain instant in time, the magnetic field points in the positive z-direction. At the same point and at the same instant, the electric field points in the 

positive x-direction 

negative x-direction 

positive y-direction 

negative y-direction 

positive z-direction 

negative z-direction

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Direction of propagation = EXB = EXE d -x direction option-2

Add a comment
Know the answer?
Add Answer to:
A sinusoidal electromagnetic wave in a vacuum is propagating in the positive y- direction. At a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sinusoidal electromagnetic wave is propagating in vacuum. (a) At a given point and at a...

    A sinusoidal electromagnetic wave is propagating in vacuum. (a) At a given point and at a particular time the electric field is in the +x direction and the magnetic field is in the -y direction. What is the direction of propagation of the wave? (b) At the above point the intensity of the wave is 0.77 W⋅m−2. What is the electric field amplitude at this point? (NOTE: μo=4π×10−7T⋅m/A and c=3.00×108m/s.)

  • Part A: An electromagnetic wave is propagating in the positive x direction. At a given moment...

    Part A: An electromagnetic wave is propagating in the positive x direction. At a given moment in time, the magnetic field at the origin points in the positive y direction. In what direction does the electric field at the origin point at that same moment? Positive x Negative x Positive y Negative y Positive z Negative z Part B: The figure shows the electromagnetic field as a function of position for two electromagnetic waves traveling in a vacuum at a...

  • Given that a sinusoidal electromagnetic wave is propagating in a vacuum. At a particular time at...

    Given that a sinusoidal electromagnetic wave is propagating in a vacuum. At a particular time at a point P the electric field is in one direction and the magnetic field is in another direction but perpendicular. Find the direction of the wave and if given the intensity at the point P find the electric field amplitude

  • A sinusoidal electromagnetic wave is propagating in vacuum. At a given point and at a particular...

    A sinusoidal electromagnetic wave is propagating in vacuum. At a given point and at a particular time the electric field is in the +x direction and the magnetic field is in the -y direction, and at that point the intensity of the wave is 0.45 W/m^2. (c = 3.0 times 10^8 m/s, mu 0 = 4 pi times 10^7 T middot m/A epsilon_0 = 8.85 times 10^-12 C^2/N middot m^2) What is the direction of propagation of the wave? What...

  • The electric field of an electromagnetic wave points in the negative y-direction. At the same time,...

    The electric field of an electromagnetic wave points in the negative y-direction. At the same time, the magnetic field of this wave points in the negative x-direction. In what direction is the wave traveling? +x-direction -x-direction +y-direction -y-direction +z-direction -z-direction Find the frequency of blue light with a wavelength of 454 nm. Hz What is the rms value of the electric field in a sinusoidal electromagnetic wave that has a maximum electric field of 94 V/m? V/m

  • The momentum density of an electromagnetic wave is defined as  . The direction of the momentum density...

    The momentum density of an electromagnetic wave is defined as  . The direction of the momentum density denotes the direction of the propagation of an electromagnetic wave. At a particular instant, the electric field associated with an electromagnetic wave propagating in free space is directed along the positive x-axis and the magnetic field is along the positive z-axis, as shown in the figure. What is the direction of propagation for this electromagnetic wave? The electromagnetic wave propagates: A. along the positive...

  • An electromagnetic wave is propagating in the -x direction. At one instant, the electric field of...

    An electromagnetic wave is propagating in the -x direction. At one instant, the electric field of this EM wave is pointing in the -z direction with a magnitude of 4.5e+005 N/C. At this same instant, 7. ac what are the magnitude and direction of the magnetic field of this EM wave? A 4.50e+005 T, in the -z direction B 6.67e+002 T, in the ty direction C 6.67e+002 T, in the -y direction 1.50e-003 T, in the -y direction 1.50e-003 T,...

  • Find wavelength. Find Frequency. A sinusoidal electromagnetic wave in vacuum has magnetic-field amplitude 4.30 x 10-3...

    Find wavelength. Find Frequency. A sinusoidal electromagnetic wave in vacuum has magnetic-field amplitude 4.30 x 10-3 T and wave number 2.50 x 10Ⓡ rad/m. At a certain position and time the electric field points in the -y-direction and the magnetic field B points in the +1-direction. Find the amplitude of Ē.

  • The momentum density of an electromagnetic wave is defined as Pen=€(ĒXB). The direction of the momentum...

    The momentum density of an electromagnetic wave is defined as Pen=€(ĒXB). The direction of the momentum density denotes the direction of the propagation of an electromagnetic wave. At a particular instant, the electric field associated with an electromagnetic wave propagating in free space is directed along the positive x-axis and the magnetic field is along the positive z-axis, as shown in the figure. Z B E What is the direction of propagation for this electromagnetic wave? The electromagnetic wave propagates:...

  • The momentum density of an electromagnetic wave is defined as Pem=€(ĒxB). The direction of the momentum...

    The momentum density of an electromagnetic wave is defined as Pem=€(ĒxB). The direction of the momentum density denotes the direction of the propagation of an electromagnetic wave. At a particular instant, the electric field associated with an electromagnetic wave propagating in free space is directed along the positive X-axis and the magnetic field is along the positive z-axis, as shown in the figure. Z B E What is the direction of propagation for this electromagnetic wave? The electromagnetic wave propagates:...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT