Question

Given that a sinusoidal electromagnetic wave is propagating in a vacuum. At a particular time at...

Given that a sinusoidal electromagnetic wave is propagating in a vacuum. At a particular time at a point P the electric field is in one direction and the magnetic field is in another direction but perpendicular. Find the direction of the wave and if given the intensity at the point P find the electric field amplitude

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Since I ß, and Ř (Propagation rector) are mutually the therefore, the direction of the wave is along the direction & perpendi

Add a comment
Know the answer?
Add Answer to:
Given that a sinusoidal electromagnetic wave is propagating in a vacuum. At a particular time at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sinusoidal electromagnetic wave is propagating in vacuum. (a) At a given point and at a...

    A sinusoidal electromagnetic wave is propagating in vacuum. (a) At a given point and at a particular time the electric field is in the +x direction and the magnetic field is in the -y direction. What is the direction of propagation of the wave? (b) At the above point the intensity of the wave is 0.77 W⋅m−2. What is the electric field amplitude at this point? (NOTE: μo=4π×10−7T⋅m/A and c=3.00×108m/s.)

  • A sinusoidal electromagnetic wave is propagating in vacuum. At a given point and at a particular...

    A sinusoidal electromagnetic wave is propagating in vacuum. At a given point and at a particular time the electric field is in the +x direction and the magnetic field is in the -y direction, and at that point the intensity of the wave is 0.45 W/m^2. (c = 3.0 times 10^8 m/s, mu 0 = 4 pi times 10^7 T middot m/A epsilon_0 = 8.85 times 10^-12 C^2/N middot m^2) What is the direction of propagation of the wave? What...

  • A sinusoidal electromagnetic wave in a vacuum is propagating in the positive y- direction. At a...

    A sinusoidal electromagnetic wave in a vacuum is propagating in the positive y-direction. At a certain point in the wave at a certain instant in time, the magnetic field points in the positive z-direction. At the same point and at the same instant, the electric field points in the positive x-direction negative x-direction positive y-direction negative y-direction positive z-direction negative z-direction

  • A traveling sinusoidal electromagnetic wave in vacuum has an electric field amplitude of 68.9 V/m. Find...

    A traveling sinusoidal electromagnetic wave in vacuum has an electric field amplitude of 68.9 V/m. Find the intensity of this wave and calculate the energy flowing during 11.9 s through an area of 0.0293 m2 that is perpendicular to the wave's direction of propagation. Intensity: Number 4747.21 W/ m² Energy: Number 13615.19

  • Find wavelength. Find Frequency. A sinusoidal electromagnetic wave in vacuum has magnetic-field amplitude 4.30 x 10-3...

    Find wavelength. Find Frequency. A sinusoidal electromagnetic wave in vacuum has magnetic-field amplitude 4.30 x 10-3 T and wave number 2.50 x 10Ⓡ rad/m. At a certain position and time the electric field points in the -y-direction and the magnetic field B points in the +1-direction. Find the amplitude of Ē.

  • a) The peak magnitude of the magnetic field in a particular electromagnetic wave in a vacuum...

    a) The peak magnitude of the magnetic field in a particular electromagnetic wave in a vacuum is 1.0E-12 T. What is the peak electric field magnitude for the same wave? b) If at a given time t0 the Magnetic field vector for the wave pointed in the +z direction, what direction would the electric field point at that time? c) At time t0, which direction is the EM wave traveling? d) What is the speed of the wave? e) What...

  • An Electromagnetic Wave A sinusoidal electromagnetic wave of frequency 43.0 MHz travels in free space in...

    An Electromagnetic Wave A sinusoidal electromagnetic wave of frequency 43.0 MHz travels in free space in the x-direction as in the figure. At some instant, a plane electromagnetic wave moving in the x direction has a maximum electric field of 725 N/C in the positive y direction. (a) Determine the wavelength and period of the wave. SOLUTION plane. Conceptualize Imagine the wave in the figure moving to the right along the x-axis, with the electric and magnetic fields oscillating in...

  • Part A: An electromagnetic wave is propagating in the positive x direction. At a given moment...

    Part A: An electromagnetic wave is propagating in the positive x direction. At a given moment in time, the magnetic field at the origin points in the positive y direction. In what direction does the electric field at the origin point at that same moment? Positive x Negative x Positive y Negative y Positive z Negative z Part B: The figure shows the electromagnetic field as a function of position for two electromagnetic waves traveling in a vacuum at a...

  • The figure below shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the...

    The figure below shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 48.0 m and the e field vibrates in the xy plane with an amplitude of 18.0 V/m. (a) Calculate the frequency of the wave. 6.25 MHz (b) Calculate the magnetic field B when the electric field has its maximum value in the negative y direction, magnitude. 0.13 What is the relationship between the amplitudes of the magnetic and electric fields in a...

  • Suppose that an electromagnetic wave which is linearly polarized along the x−axis is propagating in vacuum...

    Suppose that an electromagnetic wave which is linearly polarized along the x−axis is propagating in vacuum along the z−axis. The wave is incident on a conductor which is placed at z > 0 region of the space. The conductor has conductivity σ, magnetic permeability µ and electric permittivity ε. (a) Find the characteristic time for the free charge density which dissipates at the conductor. (b) Write the Maxwell equations and derive the wave equation for a plane wave propagating in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT