Question

An electromagnetic wave is propagating in the -x direction. At one instant, the electric field of this EM wave is pointing in the -z direction with a magnitude of 4.5e+005 N/C. At this same instant, 7. ac what are the magnitude and direction of the magnetic field of this EM wave? A 4.50e+005 T, in the -z direction B 6.67e+002 T, in the ty direction C 6.67e+002 T, in the -y direction 1.50e-003 T, in the -y direction 1.50e-003 T, in the ty direction D E
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An electromagnetic wave is propagating in the -x direction. At one instant, the electric field of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A sinusoidal electromagnetic wave in a vacuum is propagating in the positive y- direction. At a...

    A sinusoidal electromagnetic wave in a vacuum is propagating in the positive y-direction. At a certain point in the wave at a certain instant in time, the magnetic field points in the positive z-direction. At the same point and at the same instant, the electric field points in the positive x-direction negative x-direction positive y-direction negative y-direction positive z-direction negative z-direction

  • Part A: An electromagnetic wave is propagating in the positive x direction. At a given moment...

    Part A: An electromagnetic wave is propagating in the positive x direction. At a given moment in time, the magnetic field at the origin points in the positive y direction. In what direction does the electric field at the origin point at that same moment? Positive x Negative x Positive y Negative y Positive z Negative z Part B: The figure shows the electromagnetic field as a function of position for two electromagnetic waves traveling in a vacuum at a...

  • An electromagnetic wave is propagating in the +z direction. At a particular moment, you measure the...

    An electromagnetic wave is propagating in the +z direction. At a particular moment, you measure the electric field to be in the -y direction, what direction is the magnetic field at that moment? –x direction +x direction +y direction –y direction –z direction

  • Pretest: Electromagnetic waves Name Pretests 159 1. Shown below are pictorial and mathematical representations of an electromagnetic plane wave space. The electric field is parailel to the z-axis...

    Pretest: Electromagnetic waves Name Pretests 159 1. Shown below are pictorial and mathematical representations of an electromagnetic plane wave space. The electric field is parailel to the z-axis. The magnetic field propagating through empty is parallel to the y-axis. The E(x, y, z, t) E, sin(kx + 0x)2 The points P. Q. R, and S in the diagram above lie in thex-y plane. i. For the instant shown, rank points P. Q. R, and S according to the magnitude of...

  • 1. An electromagnetic plane wave is propagating through space. Its electric field vector is given by...

    1. An electromagnetic plane wave is propagating through space. Its electric field vector is given by E i Eo cos(kz- ot). Its magnetic field vector is: a) B=jBo cos(kz-t) b) B- kBo cos(ky-at) c) B-iB, cos(ky-) d) B- kBo cos(kz-o) 1 2. The velocity of an electromagnetic plane wave is: a) In the electric field direction b) In the magnetic field direction c) In a direction parallel to the electric and magnetic fields d) In a direction perpendicular to the...

  • An EM wave passes point P, traveling in the -x direction. At one instant of time,...

    An EM wave passes point P, traveling in the -x direction. At one instant of time, the magnetic field at point P points in the -z direction. At this same moment, the electric field at point P: a) points in the +y direction b) points in the -y direction c) must be zero at all times d) more information is needed to determine e) none of the above are correct An EM wave passes point P, traveling in the -x...

  • The figure below shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the...

    The figure below shows a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 48.0 m and the e field vibrates in the xy plane with an amplitude of 18.0 V/m. (a) Calculate the frequency of the wave. 6.25 MHz (b) Calculate the magnetic field B when the electric field has its maximum value in the negative y direction, magnitude. 0.13 What is the relationship between the amplitudes of the magnetic and electric fields in a...

  • An excited hydrogen atom releases an electromagnetic wave to return to its normal state. You use ...

    An excited hydrogen atom releases an electromagnetic wave to return to its normal state. You use your futuristic dual electric/magnetic field tester on the electromagnetic wave to find the directions of the electric field and magnetic field. Your device tells you that the electric field is pointing in the positive y direction and the magnetic field is pointing in the positive z direction. In which direction does the released electromagnetic wave travel? O +x direction O -x direction O ty...

  • The momentum density of an electromagnetic wave is defined as  . The direction of the momentum density...

    The momentum density of an electromagnetic wave is defined as  . The direction of the momentum density denotes the direction of the propagation of an electromagnetic wave. At a particular instant, the electric field associated with an electromagnetic wave propagating in free space is directed along the positive x-axis and the magnetic field is along the positive z-axis, as shown in the figure. What is the direction of propagation for this electromagnetic wave? The electromagnetic wave propagates: A. along the positive...

  • The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 427 nm, propagating...

    The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 427 nm, propagating in a vacuum in the z-direction is described by B⃗=(B1sin(kz−ωt))(i^+j^)B→=(B1sin⁡(kz−ωt))(i^+j^) where B1 = 7.6 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. 1) What is k, the wavenumber of this wave? 2) What is zmax, the distance along the positive z-axis to the position where the magnitude of the magnetic field is a maximum...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT