Question

A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between the rails is L=
0 0
Add a comment Improve this question Transcribed image text
Answer #1

T> R 1.5 x-lom HO m Whenever there is a change in magnetic flux linked to a loop due to change in magnetic field, area of looin magnetic field, then in time dt bar enters in the magnetic field a distance, dx = vdt Now, calculate the magnetic flux thrNow, magnitude of induced emf, do dt E = BvL This induced emf drives current in the loop whose magnitude is given by, & R BvL7-12) Here, 1 - is the length of the bar L the force is determined using is taken in the direction of the current and directi

Add a comment
Know the answer?
Add Answer to:
A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between...

    A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between the rails is L = 0.20 m. The rails are connected on one end by a R = 10.12 resistor. A conducting bar of mass 1.2 kg can slide on the rails without friction. When the conducting bar is at x = 0, the enclosed area of the loop is 0.03 m2. There is zero resistance in the conducting bar or rails. A uniform...

  • In a region with a constant magnetic field as shown, there are two conducting frictionless horizontal...

    In a region with a constant magnetic field as shown, there are two conducting frictionless horizontal rails, a resistor and some conducting wire along the left side and a conducting bar on the right side that is free to slide left or right. The bar is initially at rest but at time zero a force is applied to the bar pulling it to the right so that the distance s increases with time. 1. Use Faraday's Law to determine the...

  • 6) A vertical pair of parallel conducting rails are separated by a width of 22 cm....

    6) A vertical pair of parallel conducting rails are separated by a width of 22 cm. They are connected at the bottom by a wire that has resistance 50 m. A uniform magnetic field of strength 2800 mT points perpendicularly to the pair of rails. A 640 gram sliding conducting bar connecting the rails is released from the top and allowed to drop under the influence of gravity. Its acceleration rapidly drops to zero, and the bar continues to fall...

  • 6) A vertical pair of parallel conducting rails are separated by a width of 30 cm....

    6) A vertical pair of parallel conducting rails are separated by a width of 30 cm. They are connected at the bottom by a wire that has resistance 50 m2. A uniform magnetic field of strength 2400 ml points perpendicularly to the pair of rails. A 720 gram sliding conducting bar connecting the rails is released from the top and allowed to drop under the influence of gravity. Its acceleration rapidly drops to zero, and the bar continues to fall...

  • A conducting bar of mass m is placed on two long conducting rails

    A conducting bar of mass m is placed on two long conducting rails a distance l apart. The rails are inclined at an angle theta with respect to the horizontal, andthe bar is able to slide on the rails with negligible friction. The bar and rails are in a uniform and constant magnetic field of magnitude B orientedperpendicular to the incline. A resistor of resistance R connects the upper ends of the rails and completes the circuit as shown. The...

  • A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length...

    A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length of the bar is 1.60m and a uniform magnetic field of 2.20T is applied perpendicular to the paper pointing outward as shown a) What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? b) At what rate is energy dissipated in the 4.00 ohm resistor? A conducting bar moves along frictionless conducting rails connected...

  • A conducting bar of length ! moves to the right on two frictionless rails as shown...

    A conducting bar of length ! moves to the right on two frictionless rails as shown in the figure below. A uniform magnetic field directed into the page has a magnitude of 0.290 T. Assume R = 9.10 and l = 0.330 m. X X X X X X X X * * *A* X * * * * * * * X X * * x * * * * * * * X X * * x *...

  • A conductiong bar of mass m is place on two long conducting rails a distance l...

    A conductiong bar of mass m is place on two long conducting rails a distance l apart. The rails are inclined at an angle ? with respect to the horizontal, and the bar is able to slide on the rails with negligible friction. The bar and rails are in a uniform and constant magnetic field of magnitude B oriented perpendicular to the incline. A resistor of resistance R connects the upper ends of the rails and completes the circuit as...

  • A metal bar is in contact with a pair of metal parallel rails as shown. A...

    A metal bar is in contact with a pair of metal parallel rails as shown. A steady uniform magnetic field B, perpendicular to the plane of the rails and pointing outward from the page, is present. The bar is in downward motion with velocity of magnitude ?. The direction of the induced current through the resistor R is

  • 13. A conducting bar moves along frictionless conducting rails connected to a 4.00-0 resistor as shown...

    13. A conducting bar moves along frictionless conducting rails connected to a 4.00-0 resistor as shown in the figure. The length of the bar is 1.60 m and a uniform magnetic field of 2.20 T is applied perpendicular to the paper pointing outward, as shown. (8 points) (a) If the bar is moving to the right at a constant speed of 6.0 m/s, what is the direction of the current and the power dissipated by the resistor? (b) What is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT