Question

13. A conducting bar moves along frictionless conducting rails connected to a 4.00-0 resistor as shown in the figure. The len

0 1
Add a comment Improve this question Transcribed image text
Answer #1

. . Il T iit . . . . V Tepplicat Ï 4 x 2:20x160x6 = 5.28 A P= Bex e enter Bedste Bev iz Beve - 2.200 1.x6 = 5.28A PE IRR= B3V

Add a comment
Know the answer?
Add Answer to:
13. A conducting bar moves along frictionless conducting rails connected to a 4.00-0 resistor as shown...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length...

    A conducting bar moves along frictionless conducting rails connected to a 4.00 omega resistor. The length of the bar is 1.60m and a uniform magnetic field of 2.20T is applied perpendicular to the paper pointing outward as shown a) What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? b) At what rate is energy dissipated in the 4.00 ohm resistor? A conducting bar moves along frictionless conducting rails connected...

  • Use 3 Sig Figs in this Problem Part A - What is the EMF induced across...

    Use 3 Sig Figs in this Problem Part A - What is the EMF induced across the ends of the bar? Part B What is the current flowing in the loop? Part C What is the applied force required to move the bar to the right with a constant speed of 6.00 m/s? Part D At what rate is energy dissipated in the 4.00 Ω resistor? A conducting bar (negligible resistance) moves along frictionless conducting rails (negligible resistance) connected to...

  • A conducting bar of length f moves to the right on two frictionless rails as shown...

    A conducting bar of length f moves to the right on two frictionless rails as shown in the figure below. A uniform magnetic field directed into the page has a magnitude of 0.290 T. Assume R-9.10 Ω and 1 0.320 m. (a) At what constant speed should the bar move to produce an 8.60-mA current in the resistor? 83m/s (b) What is the direction of the induced current? clockwise counterclockwise O into the page O out of the page (c)...

  • A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between...

    A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between the rails is L = 0.20 m. The rails are connected on one end by a R = 10.12 resistor. A conducting bar of mass 1.2 kg can slide on the rails without friction. When the conducting bar is at x = 0, the enclosed area of the loop is 0.03 m2. There is zero resistance in the conducting bar or rails. A uniform...

  • A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between...

    A pair of conducting, parallel, frictionless rails is mounted on an insulating platform. The distance between the rails is L=0.30 m. A light conducting bar can slide on the rails without friction. When the conducting bar is at x = 0, the enclosed area of the loop is 0.03 m². There is zero resistance in the conducting bar or rails, the rails are connected on one end by a R=1.5 resistor. A uniform magnetic field of B -0.25 T is...

  • A conducting bar of length ! moves to the right on two frictionless rails as shown...

    A conducting bar of length ! moves to the right on two frictionless rails as shown in the figure below. A uniform magnetic field directed into the page has a magnitude of 0.290 T. Assume R = 9.10 and l = 0.330 m. X X X X X X X X * * *A* X * * * * * * * X X * * x * * * * * * * X X * * x *...

  • A conductiong bar of mass m is place on two long conducting rails a distance l...

    A conductiong bar of mass m is place on two long conducting rails a distance l apart. The rails are inclined at an angle ? with respect to the horizontal, and the bar is able to slide on the rails with negligible friction. The bar and rails are in a uniform and constant magnetic field of magnitude B oriented perpendicular to the incline. A resistor of resistance R connects the upper ends of the rails and completes the circuit as...

  • A metal bar is in contact with a pair of metal parallel rails as shown. A...

    A metal bar is in contact with a pair of metal parallel rails as shown. A steady uniform magnetic field B, perpendicular to the plane of the rails and pointing outward from the page, is present. The bar is in downward motion with velocity of magnitude ?. The direction of the induced current through the resistor R is

  • The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart.

    The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm apart. The system is in a uniform magnetic field of strength 0.75 T, which is directed into the page. The resistances of the rod and the rails are negligible, but the section PQ has a resistance of 0.25 Ω. (a) What is the emf induced in the rod when it is moving to the right with a speed of 5.0 m/s? (b) What force is required to...

  • A conducting bar of mass m is placed on two long conducting rails

    A conducting bar of mass m is placed on two long conducting rails a distance l apart. The rails are inclined at an angle theta with respect to the horizontal, andthe bar is able to slide on the rails with negligible friction. The bar and rails are in a uniform and constant magnetic field of magnitude B orientedperpendicular to the incline. A resistor of resistance R connects the upper ends of the rails and completes the circuit as shown. The...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT