Question

Optics

You combine two thin lenses by placing them in contact so that their axes coincide, forming what is called a compound lens. The focal lengths of the lenses are  cm and − cm, respectively. Find the focal length of this compound lens. Does this compound lens act as a diverging lens, as a converging lens, or it cannot be determined?

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Optics
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Two thin lenses, with focal lengths of 25.0 cm and -30.0 cm are placed in contact...

    Two thin lenses, with focal lengths of 25.0 cm and -30.0 cm are placed in contact in an orientation so that their optic axes coincide. What is the focal length of the two in combination?

  • Optics and Converging & Diverging Lenses 1. What is the relationship between the curvature of a...

    Optics and Converging & Diverging Lenses 1. What is the relationship between the curvature of a lens (thick vs thinner converging lenses) and its light-bending power? 2. Focal length: is there a trend in the image distances vis a vis focal lengths as the object distance gets larger? What happens to the thin lens formula when object distance is very large? 3. In the compound lens formula, 1/fcomp = 1/f1 + 1/f2, why does a longer focal lens will not...

  • ​A converging lens is placed at x 0, a distance d 11.5 cm to the left of a diverging lens

    A converging lens is placed at x 0, a distance d 11.5 cm to the left of a diverging lens as in the figure below (where F and Fo locate the focal points for the converging and the diverging lens, respectively). An object is located et x-1.90 cm to the left of the converging lens and the focal lengths of the converging and diverging lenses are 4.50 cm and -8.60 cm, respectively. (a) Determine the x-location in cm of the final...

  • help

    Two systems are formed from a converging lens and a diverging lens, as shown in parts a and b of the drawing. (The point labeled "Fconverging" is the focal point of the converging lens.) An object is placed inside the focal point of lens 1 at a distance of 7.30 cm to the left of lens 1. The focal lengths of the converging and diverging lenses are 15.00 and -20.0 cm respectively. The distance between the lenses is 50.0 cm....

  • Two systems are formed from a converging lens and a diverging lens, as shown in parts...

    Two systems are formed from a converging lens and a diverging lens, as shown in parts a and b of the drawing. (The point labeled "Fconverging" is the focal point of the converging lens.) An object is placed inside the focal point of lens 1 at a distance of 8.60 cm to the left of lens 1. The focal lengths of the converging and diverging lenses are 15.0 and -20.0 cm respectively. The distance between the lenses is 50.0 cm....

  • Two systems are formed from a converging lens and a diverging lens, as shown in parts...

    Two systems are formed from a converging lens and a diverging lens, as shown in parts a and b of the drawing. (The point labeled "Fconverging" is the focal point of the converging lens.) An object is placed inside the focal point of lens 1 at a distance of 6.4 cm to the left of lens 1. The focal lengths of the converging and diverging lenses are 15.0 and -20.0 cm respectively. The distance between the lenses is 50.0 cm....

  • 2. Two thin lenses, one a converging lens and the other a diverging lens, are arated...

    2. Two thin lenses, one a converging lens and the other a diverging lens, are arated by 1.00 m along the same principal axis, as shown in the figure. The magnitude of the focal length of the converging lens is 25 cm, while the magnitude of the focal length of the diverging lens is 40 em. An object 8,25 cm tall is placed 35 cm to the left of the converging lens. (a) Where is the final image produced by...

  • An object is placed 45 cm to the left of a converging lens of focal length...

    An object is placed 45 cm to the left of a converging lens of focal length 17 cm. A diverging lens of focal length −29 cm is located 11 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens?cm b) What is the linear magnification of the final image?

  • A converging lens is placed at x = 0, a distance d = 11.5 cm to...

    A converging lens is placed at x = 0, a distance d = 11.5 cm to the left of a diverging lens as in the figure below (where F and Flocate the focal points for the converging and the diverging lens, respectively). An object is located at x = -1.60 cm to the left of the converging lens and the focal lengths of the converging and diverging lenses are 4.50 cm and -8.10 cm, respectively, HINT FO to ro (a)...

  • Two lenses are placed 12 cm apart as shown in the figure. The converging lens has...

    Two lenses are placed 12 cm apart as shown in the figure. The converging lens has a focal length of 20 cm and the diverging lens has a focal length of � 10 cm. An object is located 50 cm in front of the converging lens as shown. Where along the principle axis is the location of the image formed by only the converging lens? Answer between the two lenses at the diverging lens to the left of the converging...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT