Question

6. Ataut string is under a tension of 40.0 N and a standing wave is generated on it whose oscillation amplitude is 5.0 cm with a frequency of 60Hz. Theliner mass density of the wire is 5.00 g. a) What is the velocity of propagation ofthe wave on the string? b) If we observe the third harmonic, what is the length of the string? Draw the figure. c) What is angular frequency and wave number?
0 0
Add a comment Improve this question Transcribed image text
Answer #1

we know v= sqrt(T/m)

so, the velocity of propagation of wave = sqrt(40/0.005) = 89.44 m/s.....................ans a)

n = v/2L

SO, n3 = 3n= 3v/2l

or, 3x60 = 3x89.44/3l

or, l = 0.4968 m = 49.68 cm ...................................ans b)

Add a comment
Know the answer?
Add Answer to:
A taut string is under a tension of 40.0 N and a standing wave is generated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A rope has a length of 5.00 m between its two fixed points and a mass per unit length (linear density) of 40.0 g / m. if the string vibrates at a fundamental frequency of 20 Hz. a) Calculate the tension of the string. b) Calculate the frequency and wavele

    A rope has a length of 5.00 m between its two fixed points and a mass per unit length (linear density) of 40.0 g / m. if the string vibrates at a fundamental frequency of 20 Hz. a) Calculate the tension of the string. b) Calculate the frequency and wavelength of the second harmonic (n = 2). c) Calculate the frequency and wavelength of the third harmonic. d) the speed of propagation of the wave.

  • A simple harmonic oscillator at the position x=0 generates a wave on a string. The oscillator...

    A simple harmonic oscillator at the position x=0 generates a wave on a string. The oscillator moves up and down at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. At time t = 0, the oscillator is passing through the origin and moving down. The string has a linear mass density of 50.0 g/m and is stretched with a tension of 5.00 N. A simple harmonic oscillator at the position x = 0 generates a wave...

  • The standing wave is formed in a string with two fixed ends. The mass of the...

    The standing wave is formed in a string with two fixed ends. The mass of the string is 20.0 g and a length of 8.0 m. The tension in the string is 40.0 N. Determine the positions of the nodes and antinodes for the third harmonic. nodes: antinodes: What is the vibration frequency for this harmonic?

  • The standing wave is formed in a string with two fixed ends. The mass of the...

    The standing wave is formed in a string with two fixed ends. The mass of the string is 20.0 g and a length of 8.0 m. The tension in the string is 40.0 N. (a) Determine the positions of the nodes and antinodes for the third harmonic. nodes: antinodes: (b) What is the vibration frequency for this harmonic?

  • The figure shows a standing wave on a string of length L = 1.20 m with...

    The figure shows a standing wave on a string of length L = 1.20 m with fixed ends oscillating at frequency f = 450 Hz. Answer the following questions. 1. What is the speed of wave propagation in the string? 2. The linear mass density of the string is ? = 10.0 g/m. (Note the units.) What is the tension FT in the string? 3. The tension in the string is changed to F'T = 324 N. What does the...

  • A sinusoidal wave moving along a string under tension is described by the equation D ?,?...

    A sinusoidal wave moving along a string under tension is described by the equation D ?,? =0.002sin(10?−120?)(inSIunit) Where ? is the transverse displacement of the string, ? is the distance along the string and ? is the time. Find a) Amplitude of the transverse displacement of the string b) The wavelength of the traveling wave c) Its frequency of oscillation, and d) The speed of propagation of the wave

  • A standing wave pattern is created on a string with mass density u- 3x 10 kg/m....

    A standing wave pattern is created on a string with mass density u- 3x 10 kg/m. A wave generator with frequency f- 65 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L- 0.74 m. Initially the 3rd harmonic wave pattern is formed. What is the wavelength...

  • -. A metal wire is 0.400 m long and is under a Tension force of 75.0N....

    -. A metal wire is 0.400 m long and is under a Tension force of 75.0N. a) What is the mass per unit length if it has a fundamental frequency of 440 Hz? b) How fast does a sound wave travel in the wire? c) What are the frequencies of the 2nd, 3rd, and 7th harmonics? d) What are the wavelengths for the 1st, 2nd, and 7th harmonics? e) What new tension must you exert on the string for the...

  • 4. A metal wire is 0.400 m long and is under a Tension force of 75.ON....

    4. A metal wire is 0.400 m long and is under a Tension force of 75.ON. a) What is the mass per unit length if it has a fundamental frequency of 440 Hz? b) How fast does a sound wave travel in the wire? c) What are the frequencies of the 2nd, 3rd, and 7th harmonics? d) What are the wavelengths for the 1st, 2nd, and 7th harmonics? e) What new tension must you exert on the string for the...

  • Consider the 4th harmonic (standing wave with n = 4) on a string of length L...

    Consider the 4th harmonic (standing wave with n = 4) on a string of length L with fixed ends, mass density μ and tension T .a) On a standing wave, the nodes are the points that are not moving, and the antinodes the ones that move with the biggest amplitude. How many nodes and antinodes are on the 4th harmonic? Count them and make a graph of the function clearly showing where all the nodes and antinodes are located. b)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT