Question

Consider the expansion of air, which is contained in a piston-cylinder assembly, through two different processes: (A) adiabat

0 0
Add a comment Improve this question Transcribed image text
Answer #1

A -> adiabatic process B-) Non-adiabatic Process (Q1-2) A=0 (Q1-2)B>O from ist law of thermodynamics, Q 12 = AU 12+W ,2 2 ForALSO, [[W+Q) 2] A <[[wtQ) 12] option A is also correct.

please give Thumbs up

Add a comment
Know the answer?
Add Answer to:
Consider the expansion of air, which is contained in a piston-cylinder assembly, through two different processes:...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3.93 w Air contained in a piston-cylinder assembly undergoes two processes in series, as shown in...

    3.93 w Air contained in a piston-cylinder assembly undergoes two processes in series, as shown in Fig. P3:93. Assuming ideal gas behavior for the air, determine the work and heat transfer for the overall process, each in kJ/kg. Isothermal process Ti = 300 K (bar) 1 °C 0.1 0.2 0.3 0.4 V (m) 0.5 0.6 FIGURE P3.93

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • A gas contained within a piston-cylinder assembly undergoes two processes

    A gas contained within a piston-cylinder assembly undergoes two processes, A and B, between the same end states, 1 and 2, where p1=10 bar, V1= 0.1 m3, U1=400 kJ and p2=1 bar, V2=1.0 m3, U2=200 kJ: Process A. Process from 1 to 2 during which the pressure-volume relation is p.V = constant. Process B: Constant-volume process from state 1 to a pressure of 2 bar, followed by a linear pressure-volume process to state 2 Kinetic and potential energy effects can be ignored. For...

  • One kg of air in a piston-cylinder assembly undergoes two processes in series from an initial...

    One kg of air in a piston-cylinder assembly undergoes two processes in series from an initial state where p1 = 0.5 MPa, T1 = 227oC. Process 1-2: Constant-temperature expansion until the volume is twice the initial volume. Process 2-3: Constant-volume heating until the pressure is again 0.5 MPa. Sketch the two processes in series on a p-v diagram. Assuming ideal gas behavior, determine (a) the pressure at state 2, in MPa, (b) the temperature at state 3, in oC, and...

  • Air is contained in a vertical piston-cylinder assembly such that the piston is in static...

    Air is contained in a vertical piston-cylinder assembly such that the piston is in static equilibrium The atmosphere exerts a pressure of 101 kPa on top of the 0.8 meter-diameter piston. The gage pressure of the air inside the cylinder is 1.2 kPa. Subsequently, a weight is placed on top of the piston, as shown below, causing the piston to descend until reaching a new static equilibrium position. At this position, the gage pressure of the air inside the cylinder is...

  • PROBLEM-3 (30%) One kg of air in a piston-cylinder assembly undergoes two processes in series from...

    PROBLEM-3 (30%) One kg of air in a piston-cylinder assembly undergoes two processes in series from an initial state where P1 = 0.5 MPa, T1 = 227°C: Process 1-2: Constant-temperature expansion until the volume is twice the initial volume. Process 2–3: Constant-volume heating until the pressure is again 0.5 MPa. Sketch the two processes in series on a P-v diagram. Assuming ideal gas behavior, determine: (a) the pressure at state 2, (in MPa) (b) the temperature at state 3, (in...

  • Air in a piston-cylinder assembly executes a Carnot power cycle (4 internally reversible processes, shown in...

    Air in a piston-cylinder assembly executes a Carnot power cycle (4 internally reversible processes, shown in the figure below). The isothermal expansion and compression processes occur at TH 1400 K and Tc-350 K, respectively. The pressure at the beginning and end of the isothermal compression are p4-100 kPa and pi - 500 kPa, respectively Assume the ideal gas model for the air: ai 0.717 J/g.K Mair- 28.97 g/mol kpv.air 1.4 R 8.314J /(mol K) Adiabatic Isothermal expansion Adiabatic compression Gas...

  • 3.111 Air contained in a piston-cylinder assembly contains air, initially at 2 bar, 300 K and...

    3.111 Air contained in a piston-cylinder assembly contains air, initially at 2 bar, 300 K and a volume of 2 m^3. The air undergoes a process to a state where pressure is 1 bar, during which the pressure-volume relationship is PV=constant. Assuming ideal gas behavior for air, determine the mass of the air, in kg and the work and heat transfer, each in KJ.

  • 5. (a)Consider adiabatic compression of 2 kg of air in a piston-cylinder assembly from 1 bar...

    5. (a)Consider adiabatic compression of 2 kg of air in a piston-cylinder assembly from 1 bar and 330 K (State 1) to 14 bar and 700 K (State 2). Air can be considered an ideal gas at these conditions and molecular weight of air is 28.97 kg/kmol. Find the entropy of air in State 1 and State 2. Using the entropy balance equation for a closed system calculate the entropy generation (kJ/K) during the compression process. (b) If entropy decreases...

  • Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1 L, unde...

    Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1 L, undergoes a process to a final state where the pressure is 8 bar and the volume is 2 L During the process, the pressure-volume relationship is linear. Assuming the ideal gas model for the air, determine the work and heat transfer, each in kJ. 4. Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT