Question

1. Consider one-dimensional harmonic oscillator H w(aaand its energy eigenstates are denoted as ln) , n E No. The state of system is given by n-0 (a) Find Z. (b) Calculate the von Neumann entropy. (c) Evaluate mean energy.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Valuu ơf 2( mam Cr s 2 2 ㄧㄨ 2. 2

Add a comment
Know the answer?
Add Answer to:
1. Consider one-dimensional harmonic oscillator H w(aaand its energy eigenstates are denoted as ln) , n...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. n) are harmonic oscillator energy eigenstates. 10). А[2)- (a) Find Alo), Áli), and A12). (Ans:...

    1. n) are harmonic oscillator energy eigenstates. 10). А[2)- (a) Find Alo), Áli), and A12). (Ans: Alo)-0. Α1) V211).) (b) Consider a quantum state given by where a is a real number with 0 a 1. Calculate (ψ1e1ψ) and 2a2)/2mu.) that Δ ris at its minimum. (Ans: (as)2-A(3-6a2 + 4a4)/2mw. ns: ha (1-a2)/mw. (c) Find (Ar)2ー(v' U)-(圳刘の2, what is the value of a such a = V3/2.) 1. n) are harmonic oscillator energy eigenstates. 10). А[2)- (a) Find Alo), Áli),...

  • 1. The two dimensional Harmonic Oscillator has the Hamiltonian n, n'>denotes the state In> of the...

    Please solve with the explanations of notations 1. The two dimensional Harmonic Oscillator has the Hamiltonian n, n'>denotes the state In> of the x-oscillator and In'> of the y-oscillator. This system is perturbed with the potential energy: Hi-Kix y. The perturbation removes the The perturbation removes the degeneracy of the states | 1,0> and |0,1> a) In first order perturbation theory find the two nondegenerate eigenstates of the full b) Find the corresponding energy eigenvalues. На Hamiltonian as normalized linear...

  • 2. Consider a one-dimensional simple harmonic oscillator. Do the following algebraically. 2. Consider a one -dimensional...

    2. Consider a one-dimensional simple harmonic oscillator. Do the following algebraically. 2. Consider a one -dimensional simple harmonic oscillator. Do the following algebraically. a) Construct a linear superposition of I0) and |1) by choosing appropriate phases, such that (x) is as large as possible. i) Suppose the oscillator is in the state la) att 0. Find la) and x) ii) Evaluate the expectation value(x) at t 〉 0. ii Evaluate (A x)2) att > 0. b) Answer the same questions...

  • Question 3 Consider the one-dimensional harmonic oscillator, and denote its properly normalised e...

    ONLY (e) (f) NEEDED THANK YOU :) Question 3 Consider the one-dimensional harmonic oscillator, and denote its properly normalised energy eigenstates by { | n〉, n = 0, 1, 2, 3, . . .). Define the state where α is a complex number, and C is a normalisation constant. (a) Use a Campbell-Baker-Hausdorff relation (or otherwise) to show that In other words, | α > is an eigenstate of the (non-Hermitian) lowering operator with (complex) eigenvalue α. (b) During lectures...

  • question no 4.22, statistical physics by Reif Volume 5 4.92 Mean energy of a harmonic oscillator A harmonic oscillator...

    question no 4.22, statistical physics by Reif Volume 5 4.92 Mean energy of a harmonic oscillator A harmonic oscillator has a mass and spring constant which are such that its classical angular frequency of oscllation is equal to w. In a quantum- mechanical description, such an oscillator is characterized by a set of discrete states having energies En given by The quantum number n which labels these states can here assume all the integral values A particular instance of a...

  • A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy ,...

    A particle of mass m is bound by the spherically-symmetric three-dimensional harmonic- oscillator potential energy , and ф are the usual spherical coordinates. (a) In the form given above, why is it clear that the potential energy function V) is (b) For this problem, it will be more convenient to express this spherically-symmetric where r , spherically symmetric? A brief answer is sufficient. potential energy in Cartesian coordinates x, y, and z as physically the same potential energy as the...

  • Consider a particle with mass m described by the Hamilton operator for a one-dimensional harmonic oscillator...

    Consider a particle with mass m described by the Hamilton operator for a one-dimensional harmonic oscillator 2 Zm 2 The normalized eigenfunctions for Hare φη (x) with energies E,,-(n + 2) ha. At time t-0 the wavefunction of the particle is given by у(x,0)- (V3іфі (x) + ф3(x)). Now let H' be an operator given by where k is a positive constant. 1) Show that H' is Hermitian. 2) Express H' by the step-operators a+ and a 3) Calculate the...

  • 4. (20 points). Consider a quantum harmonic oscillator with characteristic frequency w. The syste...

    4. (20 points). Consider a quantum harmonic oscillator with characteristic frequency w. The system is in thermal equilibrium at temperature T. The oscillator is described by the following density matrix: A exp kaT where H is the usual harmonic oscillator Hamiltonian and kB is Boltzmann's constant. Working in the Fock (photon number) basis: a. Find the diagonal elements of ρ b. Determine the normalization constant A. c. Calculate the expectation value of energy (E 4. (20 points). Consider a quantum...

  • Estimate the ground-state energy of a one-dimensional simple harmonic oscillator using (50) = e-a-l as a...

    Estimate the ground-state energy of a one-dimensional simple harmonic oscillator using (50) = e-a-l as a trial function with a to be varied. For a simple harmonic oscillator we have H + jmwºr? Recall that, for the variational method, the trial function (HO) gives an expectation value of H such that (016) > Eo, where Eo is the ground state energy. You may use: n! dH() ||= TH(c) – z[1 – H(r)], 8(2), dx S." arcade an+1 where (x) and...

  • 7 Harmonic oscillator in "energy space" Consider the harmonic oscillator in "energy space", i.e., in terms...

    7 Harmonic oscillator in "energy space" Consider the harmonic oscillator in "energy space", i.e., in terms of the basis of eigenvectors n) of the harmonic oscillator Hamiltonian, with Hn) -hwn1/2)]n). We computed these in terms of wavefunctions in position space, ie. pn(x)-(zln), but we can also work purely in terms of the abstract energy eigenvectors in Dirac notation. PS9.pdf 1. You computed the matrix elements 〈nleln) on an earlier problem set. Now find (nn) for general n,n' 2. Find the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT