Question

Physics help, interested in this. I was not able to figure it out. A sphere of...

Physics help, interested in this. I was not able to figure it out. A sphere of radius 5.00cm is uniformly charged with a volume charge density of 2.26*10^-7C/m^3. Use Gauss's law to determine the mag of the electric field in N/C inside the sphere at a distance of 2.00 cm from the center.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Dale Tapi No. Page No... Given a Radley (R) = 5.00 cm R 5.00 x 162 = S = 2.28 x107 ४ 2.00cm 2 x 102m draw Graussian ophane of

Add a comment
Know the answer?
Add Answer to:
Physics help, interested in this. I was not able to figure it out. A sphere of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a sphere of radius a with a uniform charge distribution over its volume, and a...

    Consider a sphere of radius a with a uniform charge distribution over its volume, and a total charge of q_o. Use Gauss's Law to calculate the electric field outside the sphere, and then inside the sphere. Solve the general problem in r, recognizing that problem spherical symmetry. Draw a graph of the electric field the has the surface of the strength as a function of noting where if the surface of the sphere is (a). Some hints: the surface area...

  • Please answer as much as possible 1. Gauss's Law and Electrostatic Potential 10cm 5cm Figure 1....

    Please answer as much as possible 1. Gauss's Law and Electrostatic Potential 10cm 5cm Figure 1. Figure 1 shows a spherical volume of radius 10cm with uniformly distributed charge. The volume charge density isp -100nCm'. The permittivity of the sphere is the same as free space. Permittivity of Free Space: auss's Law: Eo8.854 x 10-12 F/m , D . ds-otot ctric Flux Density: (a) Find the total charge in the entire 10cm sphere and the charge in the embedded smaller...

  • #1 and #3 I) )A solid insulating sphere of radius a carries a net positive charge density 3p uniformly distributed throughout its volume. A conducting spherical shell of inner radius 2a and outer...

    #1 and #3 I) )A solid insulating sphere of radius a carries a net positive charge density 3p uniformly distributed throughout its volume. A conducting spherical shell of inner radius 2a and outer radius 3a is concentric with the solid sphere and carries a net charge density-22 Using Gauss's law, find the electric field everywhere. Sketch the electric field 2) "A) The current density in a cylindrical wire of radius R meters is uniform across a cross section of the...

  • Charge Q is distributed uniformly throughout the volume of an insulating sphere of radius R =...

    Charge Q is distributed uniformly throughout the volume of an insulating sphere of radius R = 4.00 cm. At a distance of r = 8.00 cm from the center of the sphere, the electric field due to the charge distribution has magnitude 640 N/C .    a. What is the volume charge density for the sphere? Express your answer to two significant figures and include the appropriate units. b. What is the magnitude of the electric field at a distance...

  • (a) A conducting sphere of radius R has total charge Q, which is distributed uniformly on its surface.

    1) (a) A conducting sphere of radius R has total charge Q, which is distributed uniformly on its surface. Using Gauss's law, find the electric field at a point outside the sphere at a distance r from its center, i.e. with r > R, and also at a point inside the sphere, i.e. with r < R. (b) A charged rod with length L lies along the z-axis from x= 0 to x = L and has linear charge density λ(x)...

  • 1a) An insulating sphere of radius 2.0 m contains +50 μC of electric charge uniformly distributed...

    1a) An insulating sphere of radius 2.0 m contains +50 μC of electric charge uniformly distributed throughout the volume of the sphere. i) What is the electric field 1.5 m away from the center of the sphere? ii) What is the volume charge density? iii) What is the electric field 3.0 m away from the center of the sphere? 1b) A potential difference of 6.00 nV is set up across a 5.00 cm length of copper wire that has a...

  • help with this question 3. (10 points) A uniformly charged isolated conducting sphere of 1.2 m...

    help with this question 3. (10 points) A uniformly charged isolated conducting sphere of 1.2 m diameter has a surface charge density of 8.1 uC/m2. Use Gauss's Law (properly) to calculate each of the following (remember to define a Gaussian Surface for each case): (Show your entire work for full credit) a. Calculate the electric field inside the sphere. b. Calculate the total electric flux leaving the surface of the sphere 3. c. Calculate the electric field outside the sphere.

  • 13 от 14 Constants What is the volume charge density for the sphere? Express your answer...

    13 от 14 Constants What is the volume charge density for the sphere? Express your answer to two significant figures and include the appropriate units Charge Q is distributed uniformly throughout the volume of an insulating sphere of radius R 4.00 cm. At a distance of T 8.00 cm from the center of the sphere, the electric field due to the charge distribution has magnitude 690 N/C Valve Unis Units Submit Request Answer Part B What is the magnitude of...

  • (1) Consider a very long uniformly charged cylinder with volume charge density p and radius R...

    (1) Consider a very long uniformly charged cylinder with volume charge density p and radius R (we can consider the cylinder as infinitely long). Use Gauss's law to find the electric field produced inside and outside the cylinder. Check that the electric field that you calculate inside and outside the cylinder takes the same value at a distance R from the symmetry axis of the cylinder (on the surface of the cylinder) .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT