Question

2. Consider a sphere of radius a with a uniform charge distribution over its volume, and a total charge of qo. Use Gausss Law to the electric the sphere, and then inside the sphere. Solve the general problem in r,recognizing that problem spherical symmetry. Draw a graph of the electric field the has the surface of the strength as a function of noting where if the sphere sphere is (a). surface area of a sphere radius ris is simply is charged uniformly throughout of der the then the charge the charge per unit volume, the total charge divided by the total volume. This idea will enable you to calculate not only the charge density, but by working it backwards, the charge inside a smaller Gaussian sphere with the same charge density. Finally, note that while this looks a lot the first Gausss law problem we did, the difference is in the charge being evenly distributed throughout the volume of the sphere and not on the surface. Thus, you might find the same field strength outside the sphere, but should expect it to be different inside the sphere.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

се 3 3ph fer electric shelds itu,to- po Elecic GA ulto

Add a comment
Know the answer?
Add Answer to:
Consider a sphere of radius a with a uniform charge distribution over its volume, and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q

    Guided Problem 4 -Gauss's LawA solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are b and c as shown in the following figure. (a) Find the magnitude of the electric field in the regions: r<a, a<r<b, and r>c. (b) Determine the induced charge per unit area on the inner and outer surfaces of the hollow sphere.Solution scheme:...

  • Q3: Gauss's Law Problem Statement A-100 nC point charge sits at the center of a hallow...

    Q3: Gauss's Law Problem Statement A-100 nC point charge sits at the center of a hallow spherical shell. The shell with radius 0.1 cm and negligible thickness, has a net charge of 200 nC. Find the electric field strength a) inside the sphere at r=0.05cm from the center, and b) outside the sphere at r=0.15cm from the center. In what direction does the electric field point in each case? Visual Representation • Draw a sketch of the charge distribution. •...

  • (1) Consider a very long uniformly charged cylinder with volume charge density p and radius R...

    (1) Consider a very long uniformly charged cylinder with volume charge density p and radius R (we can consider the cylinder as infinitely long). Use Gauss's law to find the electric field produced inside and outside the cylinder. Check that the electric field that you calculate inside and outside the cylinder takes the same value at a distance R from the symmetry axis of the cylinder (on the surface of the cylinder) .

  • #8 Gauss's Law and The Shell Theorem Consider a hollow sphere with charge uni- formly distributed...

    #8 Gauss's Law and The Shell Theorem Consider a hollow sphere with charge uni- formly distributed on its surface. Suppose the total charge is Q, where Q may be positive or negative Recall that Gauss's law as we have seen it is: Qenclosed ΣΕ A = EO where A = 47tr2 is the total area of the Gaussian surface Suppose the sphere radius is Ro and r > Ro. In terms of Gauss's Law, the reason why the electric field...

  • A solid, insulating sphere of radius a has a uniform charge density throughout its volume and...

    A solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q Concentric with this sphere is a conducting, hollow sphere with total charge -Q, whose inner and outer radii are b and c as shown in the figure. Express all your answers in terms of Q, a, b, c,r and k, or o as appropriate (a) [4 pts.] Draw an appropriate Gaussian surface and use it to find the electric field...

  • A sphere of radius R has total charge Q. The volume charge density (C/m3) within the...

    A sphere of radius R has total charge Q. The volume charge density (C/m3) within the sphere is ρ(r)=C/r2, where C is a constant to be determined. The charge within a small volume dV is dq=ρdV. The integral of ρdV over the entire volume of the sphere is the total charge Q. Use this fact to determine the constant C in terms of Q and R. Hint: Let dV be a spherical shell of radius r and thickness dr. What...

  • Problem 5 Compute the total charge inside in a cylinder of length h and radius Rcy,...

    Problem 5 Compute the total charge inside in a cylinder of length h and radius Rcy, when ρ(R) αR. Use the result to compute the electric field produced by the cylinder at points outside the cylinder (rRcyl). Note that since > Rcyl, the Gaussian surface (with radius r) encloses all the charge in the cylinder. State the direction of the electric field inside and outside the cylinder when a > 0, that is, when the cylinder carries positive charge. Problem...

  • A sphere has a radius of 50cm and a volume charge density Problem 2: Gauss's Electric...

    A sphere has a radius of 50cm and a volume charge density Problem 2: Gauss's Electric Field Law - 25 points Asphere has a radius of 50cm and a volume charge density of P, = 3 uC/m at the origin. and is centered a. Determine the electric field at r = 25cm b. Determine the electric field at r = 50cm C. Determine the electric field at r = 100cm

  • An electric charge Q is distributed uniformly throughout a non-conducting sphere of radius r0

    An electric charge Q is distributed uniformly throughout a non-conducting sphere of radius r0, See Fig. below. Using the Gauss's law, determine the electric field: a) Outside of sphere (r0>r). b) Inside the sphere (r0<r).

  • Consider a hollow metal sphere of inner radius r=16.5 cm and outer radius R-20.5 cm. The...

    Consider a hollow metal sphere of inner radius r=16.5 cm and outer radius R-20.5 cm. The sphere is not charged, but there is a point charge of q-253 nC at the centre of the sphere (a) Calculate the charge density on the sphere's outer surface (b) Calculate the electric field strength at the sphere's outer surface. PAPER SOLUTION Solve the problem on paper first, including all four IDEA steps. You will become a better physicist that way! Have you finished...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT