Question

Problem 2 (20%) Free Vibration with Velocity Dependent Force. Consider a 1 DOF system consisting of a block with mass 2 kg hanging from a spring with stiffness 100 N/m. The block is fully immersed in the liquid and based on the properties of the liquid, you have determined experimentally that the drag force (damping force) on the block has a magnitude of 0.91*] where x is velocity and 0.9 has units (Ns/m). Assume positive displacement of the block is downward Gravity acts downward. The block is set into motion with a downward displacement of 0.1 m and no initial velocity. Determine the response (displacement) of the mass with time. Follow the required homework format to show all of your work i.e. a) Assumptions, b) FBD, c) ID, d) EOM, e) (o, f) x(t). Problem 2. Block oscillating in liquid
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Problem 2 (20%) Free Vibration with Velocity Dependent Force. Consider a 1 DOF system consisting of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A vibration isolation system for a 1-DOF mechanical system is shown below. Displacement of the mass...

    A vibration isolation system for a 1-DOF mechanical system is shown below. Displacement of the mass x is measured from the static equilibrium position and the system parameters are m = 0.3 kg. k=10N/m, b = 4.4 Ns/m, and by = 0.5 Ns/m. Fixed 1. TI W Fixed base Figure / sehen voulon tem a) Derive the mathematical model of the system. Make sure you have the FBD and all equations and signs are properly showcased. b) Use the system...

  • Question (b) Ans : root(7/2) , 16/((5)^(1/2)) 9. Consider a mass-spring system as shown in the...

    Question (b) Ans : root(7/2) , 16/((5)^(1/2)) 9. Consider a mass-spring system as shown in the figure with a body of mass m, a spring and a dashpot. Let k, c and r(t) be the spring constant, the damping constant and driving force, respectively Let y(t) be the displacementMass of the body from the equilibrium with downward direction as positive. b) [7pts] Let m=1, c=1, k=4, and r(t) 8cosut. Determine w such that you get the steady-state vibration of maximum...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT