Question

A vibration isolation system for a 1-DOF mechanical system is shown below. Displacement of the mass x is measured from the st
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Giveni SDOF dampead flouced letration. Analgin bix mit memelihat bia 4.4 eft): a sinet) ^ 1^ kx M-03 10=R R$ Wh2= o.s mm Ft).

Comments:

  • Feel free to ask for any help in the comment section.
  • Please rate my work
Add a comment
Know the answer?
Add Answer to:
A vibration isolation system for a 1-DOF mechanical system is shown below. Displacement of the mass...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A single dof vibration system, modeled by a mass of 50 kg, damping coefficient of 300...

    A single dof vibration system, modeled by a mass of 50 kg, damping coefficient of 300 Ns/m, and spring constant of 5000 N/m, is subjected to periodic displacement excitation u(t) as shown in the figure below. 1. Derive the equation of motion 2. Using Laplace transform, find characteristic equation. 3. Find the undamped and damped natural frequencies. 4. Find the damping ratio. 5. Find the transfer function of output x(t) to the periodic input u(t) using Laplace transform.

  • Problem 2 (20%) Free Vibration with Velocity Dependent Force. Consider a 1 DOF system consisting of...

    Problem 2 (20%) Free Vibration with Velocity Dependent Force. Consider a 1 DOF system consisting of a block with mass 2 kg hanging from a spring with stiffness 100 N/m. The block is fully immersed in the liquid and based on the properties of the liquid, you have determined experimentally that the drag force (damping force) on the block has a magnitude of 0.91*] where x is velocity and 0.9 has units (Ns/m). Assume positive displacement of the block is...

  • For the single DOF spring-mass-damper system shown, the displacement of the mass is x. Assume m-...

    For the single DOF spring-mass-damper system shown, the displacement of the mass is x. Assume m- 1 kg, c 1 N-s/m, k = 1 N/m, and f(t)-1 N for all time. If the initial displacement and velocity of the mass are zero, then based on the central difference numerical integration method as discussed in the notes, using an integration time step of h 0.5 s, what is the displacement of the mass at t 0.5 s? In other words, what...

  • An automobile suspension system is modeled as a 2-DoF vibration system as shown in Figure below...

    An automobile suspension system is modeled as a 2-DoF vibration system as shown in Figure below Derive the equation of motion Determine the natural frequencies of the automobile with the following data Mass (mm) = 1000kg1000kg Momen of inertia (ImIm) = 450kgm2450kgm2 Distance between front axle and C.G. (LfLf) = 1.2m1.2m Distance between rear axle and C.G. (LfLf) = 1.5m1.5m Front spring stiffnes (kfkf) = 18kN/m18kN/m Rear spring stiffnes (krkr) = 17kN/m17kN/m Front damper coefficient (cfcf) = 3kNs/m3kNs/m Rear damper...

  • On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer func...

    On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function as: 1/(M*s^2 + B*s + K). With values mass M = 0.67538 kg, friction coefficient B = 1.8951 Ns/M, spring constant K = 322.278 N/M, and Damping coefficient d=2.54821 Ns/m. I know the Open loop system model is: (1/(0.6738s^2 + 1.89515s + 322.278)) = (1.481/(s^2+2.806s+4.772)) Implement a simple controller using only one mass (+spring + damper) so the control is critically damped

  • On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function...

    On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function as: 1/(M*s^2 + B*s + K). With values mass M = 0.67538 kg, friction coefficient B = 1.8951 Ns/M, spring constant K = 322.278 N/M, and Damping coefficient d=2.54821 Ns/m. I know the Open loop system model is: (1/(0.6738s^2 + 1.89515s + 322.278)) = (1.481/(s^2+2.806s+4.772)) Implement a simple controller using only one mass (+spring + damper) so the control is critically damped

  • Problem 2 - A modified mass-spring-damper system: Model the modified mass-spring-damper system shown below. The mass...

    Problem 2 - A modified mass-spring-damper system: Model the modified mass-spring-damper system shown below. The mass of the handle is negligi- ble (only 1 FBD is necessary). Consider the displacement (t) to be the input to the system and the cart displacement az(t) to be the output. You may assume negligible drag. MwSpring-Damper System M0 Problem 3 Repeat problem 2, but with the following differences: • Assume the mass of the handle m, is not equal to zero. You may...

  • . (40pts) Consider a spring-mass-damper system shown below, where the input u() is displacement input at...

    . (40pts) Consider a spring-mass-damper system shown below, where the input u() is displacement input at the right end of the spring k3 and x() is the displacement of mass ml. (Note that the input is displacement, NOT force) k3 k1 m2 (a) (10pts) Draw necessary free-body diagrams, and the governing equations of motion of the system. (b) (10pts) Find the transfer function from the input u() to the output x(t). (c) (10pts) Given the system parameter values of m1-m2-1,...

  • Question 2. In the experimental vibration system shown below, the point A is given a sinusoidal...

    Question 2. In the experimental vibration system shown below, the point A is given a sinusoidal motion of amplitude 6 mm at a frequency of 2 Hz. The mass of 1 kg at B is connected through the spring of stiffness 80 N/m, and its motion is opposed by a dashpot giving a viscous resistance of 5 N per m/s. Find the amplitude of motion at B, the maximum force in the spring, and the work done per cycle by...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT