Question

1. Verify the identity: ∇ × (A × B) = (B · ∇)A − (A ·...

1. Verify the identity: ∇ × (A × B) = (B · ∇)A − (A · ∇)B + A(∇ · B) − B(∇ · A) where A and B are vector functions.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

\mathrm{\nabla=\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}}

\mathrm{A=A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k}}

\mathrm{B=B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k}}

first, we must know what is \nabla\times(\vec{\mathrm{A}}\times\vec{\mathrm{B}})

\vec{\mathrm{A}}\times\vec{\mathrm{B}}=\vec{\mathrm{C}}=\mathrm{C_{x}\hat{i}+C_{y}\hat{j}+C_{z}\hat{k}}

\mathrm{(A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})\times(B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})=(A_{y}B_{z}-A_{z}B_{y})\hat{i}+(A_{z}B_{x}-A_{x}B_{z})\hat{j}+(A_{x}B_{y}-A_{y}B_{x})\hat{k}}

so,

\mathrm{C_{x}=A_{y}B_{z}-A_{z}B_{y}} ;   \mathrm{C_{y}=A_{z}B_{x}-A_{x}B_{z}} and   \mathrm{C_{z}=A_{x}B_{y}-A_{y}B_{x}}

and

\nabla\times\vec{\mathrm{C}}=\vec{\mathrm{D}}

\mathrm{\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right)\times(C_{x}\hat{i}+C_{y}\hat{j}+C_{z}\hat{k})=\left(\frac{\partial C_{z}}{\partial y}-\frac{\partial C_{y}}{\partial z}\right)\hat{i}+\left(\frac{\partial C_{x}}{\partial z}-\frac{\partial C_{z}}{\partial x}\right)\hat{j}+\left(\frac{\partial C_{y}}{\partial x}-\frac{\partial C_{x}}{\partial y}\right)\hat{k}}where,

\mathrm{\frac{\partial C_{z}}{\partial y}=\frac{\partial}{\partial y}\left(A_{x}B_{y}-A_{y}B_{x}\right)=A_{x}\frac{\partial B_{y}}{\partial y}-\frac{\partial A_{y}}{\partial y}B_{x}}\mathrm{\frac{\partial C_{y}}{\partial z}=\frac{\partial}{\partial z}\left(A_{z}B_{x}-A_{x}B_{z}\right)=\frac{\partial A_{z}}{\partial z}B_{x}-A_{x}\frac{\partial B_{z}}{\partial z}}

\mathrm{\frac{\partial C_{x}}{\partial z}=\frac{\partial}{\partial z}\left(A_{y}B_{z}-A_{z}B_{y}\right)=A_{y}\frac{\partial B_{z}}{\partial z}-\frac{\partial A_{z}}{\partial z}B_{y}}

\mathrm{\frac{\partial C_{z}}{\partial x}=\frac{\partial}{\partial x}\left(A_{x}B_{y}-A_{y}B_{x}\right)=\frac{\partial A_{x}}{\partial x}B_{y}-A_{y}\frac{\partial B_{x}}{\partial x}}

\mathrm{\frac{\partial C_{y}}{\partial x}=\frac{\partial}{\partial x}\left(A_{z}B_{x}-A_{x}B_{z}\right)=A_{z}\frac{\partial B_{x}}{\partial x}-\frac{\partial A_{x}}{\partial x}B_{z}}

\mathrm{\frac{\partial C_{x}}{\partial y}=\frac{\partial}{\partial y}\left(A_{y}B_{z}-A_{z}B_{y}\right)=\frac{\partial A_{y}}{\partial y}B_{z}-A_{z}\frac{\partial B_{y}}{\partial y}}

therefore,

\nabla\times(\vec{\mathrm{A}}\times\vec{\mathrm{B}})=\vec{\mathrm{D}}

\vec{\mathrm{D}}\mathrm{=\left[A_{x}\left(\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{Z}}{\partial Z}\right)-B_{x}\left(\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{Z}}{\partial Z}\right)\right]\hat{i}+\left[A_{y}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{Z}}{\partial Z}\right)-B_{y}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{Z}}{\partial Z}\right)\right]\hat{j}+\left[A_{z}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}\right)-B_{z}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}\right)\right]\hat{k}}

now, we see what is

(\vec{\mathrm{B}}\cdot\nabla)\vec{\mathrm{A}}=(\vec{\mathrm{B}}\cdot\nabla)\vec{\mathrm{A}}-(\vec{\mathrm{A}}\cdot\nabla)\vec{\mathrm{B}}+\vec{\mathrm{A}}(\nabla\cdot\vec{\mathrm{B}})-\vec{\mathrm{B}}(\nabla\cdot\vec{\mathrm{A}})

where,

(\vec{\mathrm{B}}\cdot\nabla)\vec{\mathrm{A}}=\mathrm{\left[(B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})\cdot\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right)\right](A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})=B_{x}\frac{\partial A_{x}}{\partial x}\hat{i}+B_{y}\frac{\partial A_{y}}{\partial y}\hat{j}+B_{z}\frac{\partial A_{z}}{\partial z}\hat{k}}

(\vec{\mathrm{A}}\cdot\nabla)\vec{\mathrm{B}}=\mathrm{\left[(A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})\cdot\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right)\right](B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})=A_{x}\frac{\partial B_{x}}{\partial x}\hat{i}+A_{y}\frac{\partial B_{y}}{\partial y}\hat{j}+A_{z}\frac{\partial B_{z}}{\partial z}\hat{k}}

\small \vec{\mathrm{A}}(\nabla\cdot\vec{\mathrm{B}})=\mathrm{(A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})\left[\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right )\cdot(B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})\right]}=\mathrm{A_{x}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)\hat{i}+A_{y}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)\hat{j}+A_{z}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)\hat{k}}

and

\small \vec{\mathrm{B}}(\nabla\cdot\vec{\mathrm{A}})=\mathrm{(B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})\left[\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right )\cdot(A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})\right]}=\mathrm{B_{x}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)\hat{i}+B_{y}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)\hat{j}+B_{z}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)\hat{k}}

when these expressions are putting into the equation, the result is \small \vec{\mathrm{D}} . This verify the identity

Add a comment
Know the answer?
Add Answer to:
1. Verify the identity: ∇ × (A × B) = (B · ∇)A − (A ·...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Verify that the equation is an identity. secºx- tan x=2 sec?x-1 To verify the identity, start...

    Verify that the equation is an identity. secºx- tan x=2 sec?x-1 To verify the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the e each step Factor the ecºx - tanx= (sec?x+tan tan) two squares. sec difference of (Тут sec?x-2 sec x tan x + tan x sec?x+2 sec x tanx + tanx sec?x + tanx secx-tan? Choose an identity, ar 2. ary ans se y...

  • Verify the identity sin x + sin x cotxcScx To verify the identity, start with the...

    Verify the identity sin x + sin x cotxcScx To verify the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step. sin x + sin x cotx LH sinx( ) (Do not simplify: sinx Apply a reciprocal identity Factor out the greatest common factor, sinx Separate the quotient into two terms (Do not simplify) Apply the appropriate even - odd identity СМС...

  • verify identity. cosx+1= sinx

    verify identity. cosx+1= sinx

  • verify the identity. 2tang 1-tanx 1

    verify the identity. 2tang 1-tanx 1

  • Verify the identity secx-secx sinx COS X To verify the identity, start with the more complicated...

    Verify the identity secx-secx sinx COS X To verify the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step secx-secx sin secx ( (Do not simplify = secx (Do not simplity = COS X Verify the identity sec x-secx sin ?x= cos x To verify the identity, start with the more complicated side and transform it to look like the other side....

  • verify identity. sin2x+2sinx = cosx+1

    verify identity. sin2x+2sinx = cosx+1

  • Verify the identity COS X + cos x tan?x sec x To verify the identity, start...

    Verify the identity COS X + cos x tan?x sec x To verify the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step COS X + cos x tan = cos() (Do not simplify.) Apply a reciprocal identity Separate the quotient into two terms Apply the appropriate even - odd identity (Do not simplify) Factor out the greatest common factor, cos x...

  • Verify that the equation is an identity. tan 4x - secºx = -2 tan ?x-1 To...

    Verify that the equation is an identity. tan 4x - secºx = -2 tan ?x-1 To verify the identity, start with the more complicated side and transform it to look like the other side. Choose each step. Factor the tan "x-secºx = »(tan?x + sec sec?x) difference of two squares tan?X + 2 tan x sec X + sec? = (Тут Apply a Pythagorean identity. tan?X + sec? tan?x-2 tan x sec X + sec?x Choose an identity, ar fy....

  • 14. Verify the identity cos(a + b) + cos(a - b) = 2 cos a cos...

    14. Verify the identity cos(a + b) + cos(a - b) = 2 cos a cos b

  • Verify that the equation is an identity. sec *x-tan 4x = 2 sec 2-1 To verify...

    Verify that the equation is an identity. sec *x-tan 4x = 2 sec 2-1 To verify the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transfer sec 4x-tan 4x = sec?x + tan x) Factor the difference of two squares. O(secx+ tanºx) (Type an exact answer in simplified form.) Choose an identity, and use it to transform tan-x. Then simplify. = 2 secx-1 7

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT