Question

1. Verify the identity: ∇ × (A × B) = (B · ∇)A − (A ·...

1. Verify the identity: ∇ × (A × B) = (B · ∇)A − (A · ∇)B + A(∇ · B) − B(∇ · A) where A and B are vector functions.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

\mathrm{\nabla=\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}}

\mathrm{A=A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k}}

\mathrm{B=B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k}}

first, we must know what is \nabla\times(\vec{\mathrm{A}}\times\vec{\mathrm{B}})

\vec{\mathrm{A}}\times\vec{\mathrm{B}}=\vec{\mathrm{C}}=\mathrm{C_{x}\hat{i}+C_{y}\hat{j}+C_{z}\hat{k}}

\mathrm{(A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})\times(B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})=(A_{y}B_{z}-A_{z}B_{y})\hat{i}+(A_{z}B_{x}-A_{x}B_{z})\hat{j}+(A_{x}B_{y}-A_{y}B_{x})\hat{k}}

so,

\mathrm{C_{x}=A_{y}B_{z}-A_{z}B_{y}} ;   \mathrm{C_{y}=A_{z}B_{x}-A_{x}B_{z}} and   \mathrm{C_{z}=A_{x}B_{y}-A_{y}B_{x}}

and

\nabla\times\vec{\mathrm{C}}=\vec{\mathrm{D}}

\mathrm{\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right)\times(C_{x}\hat{i}+C_{y}\hat{j}+C_{z}\hat{k})=\left(\frac{\partial C_{z}}{\partial y}-\frac{\partial C_{y}}{\partial z}\right)\hat{i}+\left(\frac{\partial C_{x}}{\partial z}-\frac{\partial C_{z}}{\partial x}\right)\hat{j}+\left(\frac{\partial C_{y}}{\partial x}-\frac{\partial C_{x}}{\partial y}\right)\hat{k}}where,

\mathrm{\frac{\partial C_{z}}{\partial y}=\frac{\partial}{\partial y}\left(A_{x}B_{y}-A_{y}B_{x}\right)=A_{x}\frac{\partial B_{y}}{\partial y}-\frac{\partial A_{y}}{\partial y}B_{x}}\mathrm{\frac{\partial C_{y}}{\partial z}=\frac{\partial}{\partial z}\left(A_{z}B_{x}-A_{x}B_{z}\right)=\frac{\partial A_{z}}{\partial z}B_{x}-A_{x}\frac{\partial B_{z}}{\partial z}}

\mathrm{\frac{\partial C_{x}}{\partial z}=\frac{\partial}{\partial z}\left(A_{y}B_{z}-A_{z}B_{y}\right)=A_{y}\frac{\partial B_{z}}{\partial z}-\frac{\partial A_{z}}{\partial z}B_{y}}

\mathrm{\frac{\partial C_{z}}{\partial x}=\frac{\partial}{\partial x}\left(A_{x}B_{y}-A_{y}B_{x}\right)=\frac{\partial A_{x}}{\partial x}B_{y}-A_{y}\frac{\partial B_{x}}{\partial x}}

\mathrm{\frac{\partial C_{y}}{\partial x}=\frac{\partial}{\partial x}\left(A_{z}B_{x}-A_{x}B_{z}\right)=A_{z}\frac{\partial B_{x}}{\partial x}-\frac{\partial A_{x}}{\partial x}B_{z}}

\mathrm{\frac{\partial C_{x}}{\partial y}=\frac{\partial}{\partial y}\left(A_{y}B_{z}-A_{z}B_{y}\right)=\frac{\partial A_{y}}{\partial y}B_{z}-A_{z}\frac{\partial B_{y}}{\partial y}}

therefore,

\nabla\times(\vec{\mathrm{A}}\times\vec{\mathrm{B}})=\vec{\mathrm{D}}

\vec{\mathrm{D}}\mathrm{=\left[A_{x}\left(\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{Z}}{\partial Z}\right)-B_{x}\left(\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{Z}}{\partial Z}\right)\right]\hat{i}+\left[A_{y}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{Z}}{\partial Z}\right)-B_{y}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{Z}}{\partial Z}\right)\right]\hat{j}+\left[A_{z}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}\right)-B_{z}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}\right)\right]\hat{k}}

now, we see what is

(\vec{\mathrm{B}}\cdot\nabla)\vec{\mathrm{A}}=(\vec{\mathrm{B}}\cdot\nabla)\vec{\mathrm{A}}-(\vec{\mathrm{A}}\cdot\nabla)\vec{\mathrm{B}}+\vec{\mathrm{A}}(\nabla\cdot\vec{\mathrm{B}})-\vec{\mathrm{B}}(\nabla\cdot\vec{\mathrm{A}})

where,

(\vec{\mathrm{B}}\cdot\nabla)\vec{\mathrm{A}}=\mathrm{\left[(B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})\cdot\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right)\right](A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})=B_{x}\frac{\partial A_{x}}{\partial x}\hat{i}+B_{y}\frac{\partial A_{y}}{\partial y}\hat{j}+B_{z}\frac{\partial A_{z}}{\partial z}\hat{k}}

(\vec{\mathrm{A}}\cdot\nabla)\vec{\mathrm{B}}=\mathrm{\left[(A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})\cdot\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right)\right](B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})=A_{x}\frac{\partial B_{x}}{\partial x}\hat{i}+A_{y}\frac{\partial B_{y}}{\partial y}\hat{j}+A_{z}\frac{\partial B_{z}}{\partial z}\hat{k}}

\small \vec{\mathrm{A}}(\nabla\cdot\vec{\mathrm{B}})=\mathrm{(A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})\left[\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right )\cdot(B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})\right]}=\mathrm{A_{x}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)\hat{i}+A_{y}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)\hat{j}+A_{z}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)\hat{k}}

and

\small \vec{\mathrm{B}}(\nabla\cdot\vec{\mathrm{A}})=\mathrm{(B_{x}\hat{i}+B_{y}\hat{j}+B_{z}\hat{k})\left[\left(\frac{\partial}{\partial x}\hat{i}+\frac{\partial}{\partial y}\hat{j}+\frac{\partial}{\partial z}\hat{k}\right )\cdot(A_{x}\hat{i}+A_{y}\hat{j}+A_{z}\hat{k})\right]}=\mathrm{B_{x}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)\hat{i}+B_{y}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)\hat{j}+B_{z}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)\hat{k}}

when these expressions are putting into the equation, the result is \small \vec{\mathrm{D}} . This verify the identity

Add a comment
Know the answer?
Add Answer to:
1. Verify the identity: ∇ × (A × B) = (B · ∇)A − (A ·...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT