Question

The impulse invariant approximation of an analogue transfer func- tion G(s) including a model of the analogue-to-digital conv

0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution: Given Q(z) = 4.535x10 z-domain root locus: -3 Z+0.905 (2-1)(z-0.7408) poles location : I, O, THE Leros location : -RLD 100 865 0.905 10 0.1968 Break In point (-2.675) Break away point (0.865) There is no need of Assyroptotes P-Z=10 [no. off = Vo 10.7408 + 4. 104 x 103 k and also 4.535 X 10 k -1.7408 -3 2.267X10 K-0.87014 2 3 from ② f ③, K 0.106, 30402 closed looi have given solution for first two parts

Add a comment
Know the answer?
Add Answer to:
The impulse invariant approximation of an analogue transfer func- tion G(s) including a model of the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 3 a) A linear-phase, Finite Impulse Response (FIR) digital filter with the transfer func...

    Thanks Question 3 a) A linear-phase, Finite Impulse Response (FIR) digital filter with the transfer function H() shown as follow is desired: (4 marks) (3 marks) iii) Based on (a)(ii), determine the truncated impulse response ha(n) for a 5-tap FIR filter by i) Sketch the spectrum of the transfer function H (w). ii) Determine the impulse response h(n) from H() using rectangular window method. (6 marks) iv) Calculate all the filter coefficient of ha (n). (5 marks) Question 3 a)...

  • Q.4 A position control system is shown in Figure Q4. Assume that K(s) = K, the plant 50 s(0.2s +1) transfer function is given by G(s) s02s y(t) r(t) Figure Q4: Feedback control system. (a) Design a l...

    Q.4 A position control system is shown in Figure Q4. Assume that K(s) = K, the plant 50 s(0.2s +1) transfer function is given by G(s) s02s y(t) r(t) Figure Q4: Feedback control system. (a) Design a lead compensator so that the closed-loop system satisfies the following specifications (i) The steady-state error to a unit-ramp input is less than 1/200 (ii) The unit-step response has an overshoot of less than 16% Ts +1 Hint: Compensator, Dc(s)=aTs+ 1, wm-T (18 marks)...

  • Problem 4. The open-loop transfer function of a unity feedback system is 20 G(s) S+1.5) (s +3.5) ...

    Problem 4. The open-loop transfer function of a unity feedback system is 20 G(s) S+1.5) (s +3.5) (s +15) (a) Design a lag-lead compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications. (b) Design a PID compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications. Design specifications -SSE to a unit step reference input is less than 0.02. Overshoot is less than 20%. Peak time is less than...

  • 1. A unity feedback system has open-loop transfer function given by an 100 G(s)s2)(s +4) a....

    1. A unity feedback system has open-loop transfer function given by an 100 G(s)s2)(s +4) a. Use analytical techniques (i.e. without using any plots) to estimate the closed-loop: i. Resonant frequency, w (8 marks) ii. Resonance peak, Mp (in decibels) (2 marks) i. Phase at w = 3rad/s (2 marks) b. Obtain a table for the response of the open-loop transfer function for a set S of frequency values, where S {1.5,3,5,7, 10, 15, 20} rad/s (8 marks) Hence draw...

  • 1. A unity feedback system has open-loop transfer function given by an 100 G(s)s2)(s +4) a....

    1. A unity feedback system has open-loop transfer function given by an 100 G(s)s2)(s +4) a. Use analytical techniques (i.e. without using any plots) to estimate the closed-loop: i. Resonant frequency, w (8 marks) ii. Resonance peak, Mp (in decibels) (2 marks) i. Phase at w = 3rad/s (2 marks) b. Obtain a table for the response of the open-loop transfer function for a set S of frequency values, where S {1.5,3,5,7, 10, 15, 20} rad/s (8 marks) Hence draw...

  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • 1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in...

    1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in the forward path. (a) Design a proportional controller that yields a stable system with percent overshoot less that 5% for the step input (b) Find settling time and peak time of the closed-loop system designed in part (a); (c) Design a PD compensator that reduces the settling time computed in (b) by a factor of 4 while keeping the percent overshoot less that 5%...

  • Q2. Fig Q2 shows the block diagram of an unstable system with transfer function G(s) -...

    Q2. Fig Q2 shows the block diagram of an unstable system with transfer function G(s) - under the control of a lead compensator (a) Using the Routh's stability criterion, determine the conditions on k and a so that the closed-loop system is stable, and sketch the region on the (k, a)- plane where the conditions are satisfied. Hence, determine the minimum value of k for the lead compensator to be a feasible stabilizing controller. (10 marks) (b) Suppose α-2. Given...

  • PROBLEM: A unity feedback system with the forward transfer function K G(s) s(s+7) is operating with...

    PROBLEM: A unity feedback system with the forward transfer function K G(s) s(s+7) is operating with a closed-loop step response that has 15% overshoot. Do the following: a. Evaluate the steady-state error for a unit ramp input. b. Design a lag compensator to improve the steady-state error by a factor of 20. c. Evaluate the steady-state error for a unit ramp input to your compensated system. d. Evaluate how much improvement in steady-state error was realized.

  • Problem 3 Consider the transfer function: 108 (s2 5s +100) (s + 1000)2 G(s) 1. Sketch...

    Problem 3 Consider the transfer function: 108 (s2 5s +100) (s + 1000)2 G(s) 1. Sketch the bode diagram for G. 2. Knowing that a proportional controller with gain 1000 in a unity feedback loop with G results in an unstable system, what are the phase and gain margins of G? 3. Design a proportional controller that achieves a gain margin of 40dB. gain of 10dB at 0.01rad/s and a gain margin 4. Design that is infinity. compensator that results...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT