Question

Chapter 07, Problem 36 GO Object A is moving due east, while object is moving due north. They collide and stick together in a
0 0
Add a comment Improve this question Transcribed image text
Answer #1

MA = 16.2 MB, de to t Mo = 28.3 kg VAB to- o mA, eh (u is initial velocity, ne is final) re u = 7.34 î ms. Ug = 5-4 msnl a Mohet the final moneentun be denoted by ľ salong a-axis: (mat me) vcoso [het the final velocity is such that it makes o with ac- 19 mo luo (MAXm3) sino =) : 5.59 ms an making angle 37.89° with (tre z-axis

Add a comment
Know the answer?
Add Answer to:
Chapter 07, Problem 36 GO Object A is moving due east, while object is moving due...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Chapter 07, Problem 36 GO Your answer is partially correct. Try again. Object A is moving...

    Chapter 07, Problem 36 GO Your answer is partially correct. Try again. Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision Momentum is conserved. Object A has a mass of mA = 16.6 kg and an initial velocity of VOA 7.80 m/s, due east. Object B, however, has a mass of mB = 28.2 kg and an initial velocity of V08-5.83 m/s, due north. Find the...

  • Object A is moving due east, while object B is moving due north. They collide and...

    Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of mA = 18.0 kg and an initial velocity of v0A = 8.00 m/s, due east. Object B, however, has a mass of mB = 30.0 kg and an initial velocity of v0B = 5.00 m/s, due north. Find the magnitude of the final velocity of the two-object system...

  • Object A is moving due east, while object B is moving due north. They collide and...

    Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic collision. Momentum is conserved. Object A has a mass of mA = 16.8 kg and an initial velocity of = 7.37 m/s, due east. Object B, however, has a mass of mB = 29.0 kg and an initial velocity of = 5.03 m/s, due north. Find the (a) magnitude and (b) direction of the total momentum of the...

  • An object (A) of mass m A = 29.0 kg is moving in a direction that...

    An object (A) of mass m A = 29.0 kg is moving in a direction that makes angle of 40° north of east with a speed v A = 5.10 m/s, while object (B) of mass m B = 17.5 kg is moving due north with a speed v B = 7.85 m/s. The two objects collide and stick together in a completely inelastic collision. Find the magnitude of the final velocity of the two-object system after the collision. An...

  • An object (A) of mass mAA = 27.5 kg is moving in a direction that makes...

    An object (A) of mass mAA = 27.5 kg is moving in a direction that makes angle of 56° south of east with a speed vAA = 5.00 m/s, while object (B) of mass mBB = 17.5 kg is moving due north with a speed vBB = 8.00 m/s. The two objects collide and stick together in a completely inelastic collision. Find the magnitude of the final velocity of the two-object system after the collision.

  • One object is at rest, and another is moving. The two collide in a one-dimensional, completely...

    One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 29 m/s. The masses of the two objects are 3.4 and 7.7 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is...

  • One object is at rest, and another is moving. The two collide in a one-dimensional, completely...

    One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 24 m/s. The masses of the two objects are 2.9 and 7.9 kg Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is...

  • 64. Object A of mass 19 kg travels to the east at 4.2 m/s and object...

    64. Object A of mass 19 kg travels to the east at 4.2 m/s and object B of mass 24 kg travels to the south at 3.6 m/s. They collide and stick together in a perfect inelastic collision as shown below. What is the magnitude and direction (with respect to the horizontal) of the velocity of the two objects after the collision?

  • PRINTER VERSION BACK NEXT Chapter 07, Problem 28 After skiding down a snow-covered hill on an...

    PRINTER VERSION BACK NEXT Chapter 07, Problem 28 After skiding down a snow-covered hill on an inner tube, Ashley is coasting across a level snowfield at a constant velocity of +2.0 m/s. Miranda runs after her at a velocity of +5.1 m/s and hops on the inner tube. How fast do the two of them slide across the snow together on the inner tube? Ashley's mass is 58 kg, and Miranda's is 72 kg. Ignore the mass of the inner...

  • One object is moving and one object is at rest. The two objects then collide in...

    One object is moving and one object is at rest. The two objects then collide in a dimensional, completely inelastic collision. So the two objects stick together after the collision and move off with a common velocity. Momentum of the two-object system is conserved. The masses of the two objects are 5.00 kg and 8.50 kg, respectively. The speed of the moving object masses 5.00 kg before the collision is 22.5 m/sec. Find the final speed of the two-object system...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT