Question

Consider the plant P(s) = (s3)(s22s + 17) in a feedback loop with a gain K > 0. Sketch the root locus. By applying Rouths cr

0 0
Add a comment Improve this question Transcribed image text
Answer #1

the lant Consider Pes) S-2 Charattersiic eguation PlAhi So KCS-) 3s 65 I51 S32s S35 S 23 S51 7 KS- 2k S 5S S C23K 451 -2K Crik < २s.3 K ১-9.। দ০ Pojb1e 2১০ R১-9.। S० As 2 < २5-5 ০, ०< ५१२5-5 Yangr this is Asymptoically Yangr K»ar = २5-5 SyJtem StableРСiu) -2 Jw Jw13) (-w2Jaw 3+j 17-w PLiu) 31 1-w*tj2w] У в 20 109 K 20 t0g (25) 2 3 13 b 9P 20db 9Pon APPYOX matebodt Plot Atror Plot tht Ny guist Llaht tunttioh tan/ -tan) -tah 11- Ζo1ο - 100 Iuре- о Ny 9uIs Plo giveh below oYder of tht Syjten- H-२१० ArepE -18০ १७ Llot N५१aiJ?

Add a comment
Know the answer?
Add Answer to:
Consider the plant P(s) = (s3)(s22s + 17) in a feedback loop with a gain K...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Use rlocus in MATLAB to plot the root locus for a closed loop control system with the plant trans...

    Use rlocus in MATLAB to plot the root locus for a closed loop control system with the plant transfer function 8. z 2 2)2-0.1z +0.06 For what value of k is the closed loop system stable? 9. The characteristic equation for a control system is given as z2(0.2 +k)z 6k +2-0 Use Routh-Hurwitz criterion to find when the system is stable. 10. Use MATLAB to plot the root locus for the system given in Problem 9. Compare your conclusion in...

  • 2. Given a unity feedback system with open-loop transfer function s+40s-I) a) For K-1, derive the...

    2. Given a unity feedback system with open-loop transfer function s+40s-I) a) For K-1, derive the expressions for the real and imaginary parts of G(jo). b) What happen to the real and imaginary parts of G(jo) for ω 0 and for Are there values of ω that either the real or imaginary part goes to zero? If not, compute Gijo) for some ovalue, say,, or 2, to help you sketch the Polar plot of Gja). c) d) Use Matlab to...

  • Problem 3: Consider a unity feedback system with a plant model given by 10(s- 5) and a controller...

    Problem 3: Consider a unity feedback system with a plant model given by 10(s- 5) and a controller given by s + p for K 0 and some real z and p. a) Use the root-locus technique to determine the sign of z and p so that the closed-loop system is stable for all K E (0, K) for some Ku> 0. b) Sketch the possible forms of the root-locus in terms of the pole and zero locations of Ge(s)....

  • Problem 3: (30) Consider the following systen where K is a proportional gain (K>0). s-2 (a) Sketch the root locus us...

    Problem 3: (30) Consider the following systen where K is a proportional gain (K>0). s-2 (a) Sketch the root locus using the below procedures. (1) find poles and zeros and locate on complex domain (2) find number of branches (3) find asymptotes including centroid and angles of asymptotes (4) intersection at imaginary axis (5) find the angle of departure (6) draw the root migration (b) Find the range of K for which the feedback system is asymptotically stable. Problem 3:...

  • Problem 5: Suppose that you are to design a unity gain feedback controller for a first order plant. The plant...

    Problem 5: Suppose that you are to design a unity gain feedback controller for a first order plant. The plant and controller respectively take the form ,s+ p where K> 0, p. z are parameters to be specified. (a) Using root-locus methods, specify some p and z for which it is possible to make the closed-loop system strictly stable. Include a sketch of the closed-loop root locus, as well as the corresponding range of gains K for which the system...

  • Problem 2: For a unity feedback system where the plant is defined as G(s) K s(s+3)(s...

    Problem 2: For a unity feedback system where the plant is defined as G(s) K s(s+3)(s +5) a. Sketch the Nyquist Counter path and Nyquist diagram. Clearly show the real and imag- inary axis intercept points and the low and high frequency asymptotes. (10 pts) b. Using the Nyquist criterion, obtain the range of K in which the system can be stable, unstable, and also find the value of gain K for marginal stability. (7 pts) c. Calculate the frequency...

  • For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sket...

    For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sketch the bode plot with Matlab command bode0 b) Plot the nyquist diagram using Matlab command nyquist(0, find the system stability c) Find phase margin, gain margin, and crossover frequencies using Matlab command margin(0 and find the system stability For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sketch...

  • The characteristic equation (denominator of the closed-loop transfer function set equal to zero) is given s3 + 2s2 + (20K +7)s+ 100K Sketch the root locus of the given system above with respect to...

    The characteristic equation (denominator of the closed-loop transfer function set equal to zero) is given s3 + 2s2 + (20K +7)s+ 100K Sketch the root locus of the given system above with respect to K. [ Find the asymptotes and their angles, the break-away or break-in points, the angle of arrival or departure for the complex poles and zeros, imaginary axis crossing points, respectively (if any). The characteristic equation (denominator of the closed-loop transfer function set equal to zero) is...

  • Consider the following controller in a unity feedback configuration: (s + 10) C(s) = k· (s...

    Consider the following controller in a unity feedback configuration: (s + 10) C(s) = k· (s + 5) (a) (by hand) Using an approximation for the plant P(s) a 11 S +2)(s2 + 5s + 25) determine the proper L(s) and sketch an accurate Root Locus plot (b) (by hand) Once you have established the Root Locus, determine the range of k values that guarantees closed-loop stability using the L(jw) method along with the Root Locus plot.

  • Please solve part b and c and d !! Consider the closed loop system shown in...

    Please solve part b and c and d !! Consider the closed loop system shown in Figure 4. The root locus of that system is shown in Figure 5 (s+40s+8) R(s) Y(s) Figure 4 System block diagram of Problem 4 a) On the root locus plot, sketch the region of possible roots of the dominant closed-loop poles such that the system response to a unit step has the following time domain specifications. [5] i. Damping ratio, 20.76 ii. Natural frequency,....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT