Question

m2 mi h- 2 kg, m2 Problem 1 refers to the figure below. In the figure below m2 is attached to a rope that goes over pulley and then

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ma = 4ty I=0.4 kym² ma ma T2 r. 0,2m q. mass ta m, = 2 kg T of tong Acceleration of Q: Net Pulling force mi + m₂ + I/12 1.25Thanks! please rate it up

Add a comment
Know the answer?
Add Answer to:
m2 mi h - 2 kg, m2 Problem 1 refers to the figure below. In the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem #1 mi m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 mi m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction ulk = 0.15. The incline is at the angle 0...

  • Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached...

    Atwood's machine consists of blocks of masses mi -8.8 kg and m2 - 17.5 kg attached by a cord running over a pulley as in the figure below. The pulley is id cylinder with mass M-7.30 kg and radiusr 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? Score: 1 out of Comment: (b) What is the acceleration...

  • Problem 31 mi ma Two blocks ma = 4 kg and m2 = 9 kg are...

    Problem 31 mi ma Two blocks ma = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder e with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction uk = 0.15. The incline is at the angle...

  • Consider the system shown in the figure right, where two blocks m1=5 kg, and m2=10 kg are connected to each other

    Consider the system shown in the figure right, where two blocks m1=5 kg, and m2=10 kg are connected to each other by a string that passes through a massless pulley. The stiffness constant of the spring attached to m1 and the wall is k=120N/m and the coefficient of kinetic friction between m1 and the surface is given to be μk=0.2. If the system is released from rest when the spring is at its equilibrium length and m2 is at a...

  • An Atwood's machine consists of two weights, m, = 3.2 kg and m2 = 2 kg,...

    An Atwood's machine consists of two weights, m, = 3.2 kg and m2 = 2 kg, connected by a by a string over a pulley of mass m, -1.7 kg and radius r = 0.2 m. Assume the pulley is a uniform solid cylinder (disk). The system is released from rest when my is 1.6 m above the floor, and my begins on the floor. Assume there is no friction in the pulley. Take the ground to be the location...

  • Mass M_2 starts from rest and falls a height H. Mass M_1 is attached by a...

    Mass M_2 starts from rest and falls a height H. Mass M_1 is attached by a rope to mass M_2. The rope goes over a massless and frictionless pulley. Assume the rope is massless and does not stretch. The coefficient of kinetic friction mu k exist between M_1 and the table. Determine the acceleration of M_1 after M_2 is released Determine the time it takes M_2 to fall to the ground. Determine the velocity of M_1 as M_2 hits the...

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction ulk = 0.15. The incline is at the angle o...

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction x = 0.15. The incline is at the angle =...

  • 60 The ropes are attached to the ceiling and taut. (3) This problem refers to Figure...

    60 The ropes are attached to the ceiling and taut. (3) This problem refers to Figure 2c above with m 400 kg. a) Suppose the rocket is not present and the beam is not accelerating. What is the tension in each rope? b Now, suppose instead that the rocket is present and firing and the tension in each rope is 1000 N. What force must the rocket exert on mass m so that the beam does not accelerate? (4) In...

  • In the figure, block 1 has mass mi = 430 g, block 2 has mass m2...

    In the figure, block 1 has mass mi = 430 g, block 2 has mass m2 = 520 g, and the pulley is on a frictionless horizontal axle and has radius R = 5.4 cm. When released from rest, block 2 falls 74 cm in 4.9 s without the cord slipping on the pulley. (a) What is the magnitude of the acceleration of the blocks? What are (b) tension 72 (the tension force on the block 2) and (c) tension...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT