Question

(20) 2. Sketch the root-locus plot of a system shown in Fig. 2. Determine the origin and angles of asymptotes of the root loc

0 0
Add a comment Improve this question Transcribed image text
Answer #1

OM . GOD SEB (544545) 529515 = -4+ J10-20 (1) Hong pole at = 0, -, 2 tu 20,-1, -2+i – 4 2 21 2 - –zzi = 3 (1) No. of Asym totW chanadustics eqh. HGOHOITO It K SCS+12682+45+5) 5(5+1) [s?+45+5) + R=0 54+55°+95+55+ K = 0 Routh tesvitz criterion st I 9 K

Add a comment
Know the answer?
Add Answer to:
(20) 2. Sketch the root-locus plot of a system shown in Fig. 2. Determine the origin...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Sketch the root-locus plot of a unity feedback system. Determine the asymptotes of the root loci....

    Sketch the root-locus plot of a unity feedback system. Determine the asymptotes of the root loci. Find the points where root loci cross the imaginary axis and the value of at the crossing points. Find the breakaway point. K(s+9) G(s) =- H(S)=1 s(s+2) (s+5)

  • Sketch the root locus of the given system above with respect to k

    Sketch the root locus of the given system above with respect to k [Find the asymptotes and their angles, the break-away or break-in points, the angle of arrival or departure for the complex poles and zeros imaginary axis crossing points, respectively (if any).]

  • Lectures 15-18: Root-locus method 5.1 Sketch the root locus for a unity feedback system with the ...

    help on #5.2 L(s) is loop transfer function 1+L(s) = 0 lecture notes: Lectures 15-18: Root-locus method 5.1 Sketch the root locus for a unity feedback system with the loop transfer function (8+5(+10) .2 +10+20 where K, T, and a are nonnegative parameters. For each case summarize your results in a table similar to the one provided below. Root locus parameters Open loop poles Open loop zeros Number of zeros at infinity Number of branches Number of asymptotes Center of...

  • The characteristic equation (denominator of the closed-loop transfer function set equal to zero) is given s3 + 2s2 + (20K +7)s+ 100K Sketch the root locus of the given system above with respect to...

    The characteristic equation (denominator of the closed-loop transfer function set equal to zero) is given s3 + 2s2 + (20K +7)s+ 100K Sketch the root locus of the given system above with respect to K. [ Find the asymptotes and their angles, the break-away or break-in points, the angle of arrival or departure for the complex poles and zeros, imaginary axis crossing points, respectively (if any). The characteristic equation (denominator of the closed-loop transfer function set equal to zero) is...

  • 4.) (a) Sketch the positive root locus of the system shown below using the (2, 2) Pade approximat...

    4.) (a) Sketch the positive root locus of the system shown below using the (2, 2) Pade approximation for the delay. State the asymptote angles and their centroid, the arrival and departure angles at any complex pole or zero, the frequencies of any imaginary axis crossings, and the locations of any break-in or break-away points. (b) Use Matlab to plot the positive root locus of the system shown below using the (2, 2) Pade approximation for the delay. Your sketch...

  • Consider the following root locus form

    Consider the following root locus form (a) With hand calculations, sketch the root locus plot. Please calculate the asymptotes, centrode, break in/break-away point(s), and locus departure angles and identify where on the real axis the locus exists Investigate whether the locus intersects the imaginary axis, and if it does, calculate the K value and the location on the imaginary axis where this inersection occurs. (b) Obtain the root locus in Matlab and show how your calculations in (a) are validated.

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain K as a variable s(s+4) (s2+4s+20)' Determine asymptotes, centroid,, breakaway point, angle of departure, and the gain at which root locus crosses jw -axis. [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain...

  • Problem 3: (30) Consider the following systen where K is a proportional gain (K>0). s-2 (a) Sketch the root locus us...

    Problem 3: (30) Consider the following systen where K is a proportional gain (K>0). s-2 (a) Sketch the root locus using the below procedures. (1) find poles and zeros and locate on complex domain (2) find number of branches (3) find asymptotes including centroid and angles of asymptotes (4) intersection at imaginary axis (5) find the angle of departure (6) draw the root migration (b) Find the range of K for which the feedback system is asymptotically stable. Problem 3:...

  • Plot the root locus for a system with the following characteristic equation: s2 +8s 25 s2(s...

    Plot the root locus for a system with the following characteristic equation: s2 +8s 25 s2(s 4) Be sure to calculate (and clearly label) any asymptotes, break-in/break-away points, and arrival/departure angles. If there are any imaginary axis crossings, clearly identify the frequency () and gain (K) associated with such crossings.

  • Sketch the root locus for the control system shown in Figure Q3(b). b) Calculate the breakaway...

    Sketch the root locus for the control system shown in Figure Q3(b). b) Calculate the breakaway value of K and its location. Comment on the stability of the system. 1 G(s) and Ge(s) K (s+ 1) (s+2) where K is a positive constant C(s) R(s) G(s) Ge(s) Figure Q3(b) If the control system is modified by an addition of an open loop pole at s - 6 ii) 1 sketch the new root locus showing such that G(s) (s+1) (s+2)(s...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT