Question

Block A with a mass of 9.0 kg moves along the x axis with a velocityof...

Block A with a mass of 9.0 kg moves along the x axis with a velocityof 6.0 m/s(in the positive x direction.) It suffers an ellastic collision with block B (15.0 kg), which initially has a velocity of -2.0 m/s(in the negative x direction). The blocks leave the collision along the x axis.

what is the initial kinetic energy of the system?

what is the initial momentum of the system?

what is the velocity of the blocks after the collision?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Block A with a mass of 9.0 kg moves along the x axis with a velocityof...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 45.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...

  • Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed...

    Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed v1 = 31.0 m/s. It collides with block 2, of mass m2 = 13.0 kg, which was initially at rest. The blocks stick together after the collision. A) Find the magnitude pi of the total initial momentum of the two-block system. B) Find vf, the magnitude of the final velocity of the two-block system C)What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic...

  • Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 15.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1, of mass m1m1m_1 = 6.70 kgkg , moves along a frictionless air track with...

    Block 1, of mass m1m1m_1 = 6.70 kgkg , moves along a frictionless air track with speed v1v1v_1 = 27.0 m/sm/s . It collides with block 2, of mass m2m2m_2 = 57.0 kgkg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Figure 1 of 1The figure shows two states of a system of two blocks, labeled 1 and 2, of masses m 1 and m 2, respectively. Block 2 is to the right...

  • Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with speed v1 = 11.0 m/s . It collides with block 2, of mass m2 = 43.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 13.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision? Express your answer numerically in joules. Before collision: m2 After collision:

  • Object A has a mass of 50 kg and is initially moving along the x-axis at...

    Object A has a mass of 50 kg and is initially moving along the x-axis at 5.0 m/s. It collides with object B, which has a mass of 22 kg initially at rest. After the collision, object A moves with a velocity of 3.0 m/s in a direction that is 30 degrees above the x-axis. What is the final velocity (magnitude and direction) of object B?  

  • 1) Block A started on the left, and block B on the right. The two moved...

    1) Block A started on the left, and block B on the right. The two moved towards the middle and collided.The image above depicts the result of the two blocks colliding. A) What is the total initial momentum of the blocks? B) What is the total final momentum of the blocks? C) What is the total initial kinetic energy of the blocks? D) What is the total final kinetic energy of the blocks? 2) What type of collision is this?...

  • Block 1 (0.5 kg) travels with an initial velocity of [ 60i ] + [ 60j...

    Block 1 (0.5 kg) travels with an initial velocity of [ 60i ] + [ 60j ] m/s and then collides with block 2 (0.5 kg) traveling with an initial velocity of [ -60i ] + [ -60j ] m/s. After the collision, block 1 has a final momentum of [ 0i ] + [ -20j ] kg*m/s. Assume that no external forces are present and therefore the momentum for the system of blocks is conserved. What is the total...

  • Block 1, of mass = 3.70 , moves along a frictionless air track with speed =...

    Block 1, of mass = 3.70 , moves along a frictionless air track with speed = 23.0 . It collides with block 2, of mass = 13.0 , which was initially at rest. The blocks stick togetherafter the collision. part A Find the magnitude of the total initial momentum of the two-blocksystem. Express your answernumerically. part B Find , the magnitude of the final velocity of the two-blocksystem. Express your answer numerically part C What is the change in the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT