Question

e) 24 N (numbers 3-4) A small block of mass m slides along the inner, frictionless surface of a vertical circular track. At point A the magnitude of the blocks acceleration is 2g. 19 3. What is the magnitude of the normal force on the block at point B? a) 4mg b) 5mg c) 6mg d) 7mg e) 8mg 8 4. What is the magnitude of the normal force on the block at point C? a) 4mg b) 5mg c) 6mg d) 7mg e) 8mg
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Dear student,

Find this solution.if any issue with that don't forget to write in comment section.I will rectify them as soon as possible.

If you find the solution helpful and kindly RATE THE ANSWER it would be appreciated.

Your rating is important to me.

Thanks for asking..At eoren 2 b) A+ Point-c 2 で-o

Add a comment
Know the answer?
Add Answer to:
e) 24 N (numbers 3-4) A small block of mass m slides along the inner, frictionless...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A small block with mass 0.0500 kg slides in a vertical circle of radius 0.0760 m...

    A small block with mass 0.0500 kg slides in a vertical circle of radius 0.0760 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block's path, the normal force the track exerts on the block has magnitude 3.70 N Part A: What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path? HW...

  • A small block with mass 0.0475 kg slides in a vertical circle of radius 0.0730 m...

    A small block with mass 0.0475 kg slides in a vertical circle of radius 0.0730 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block's path, the normal force the track exerts on the block has magnitude 3.70 N. What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path?

  • A small block of mass m slides along the frictionless loop the loop track shown below....

    A small block of mass m slides along the frictionless loop the loop track shown below. If it starts from rest at point A, what is the speed of the block at point B? (v = squareroot (10 g R)) What is the net force acting on the block at point C? (Don't forget the gravitational force. (F = -mg (8i + j) At what height above the bottom should the block be released so that the normal force exerted...

  • A small block of mass 0.150 kg slides in a horizontal circular trajectory of radius 0.400...

    A small block of mass 0.150 kg slides in a horizontal circular trajectory of radius 0.400 m at constant speed along the inside of a frictionless bowl (cross-section shown). The bowl’s surface makes an angle of 25.0° with the horizontal. 5. Find the magnitude of the normal force acting on the block. 6. Find the block’s speed. please explain (numbers 5-6) A small block of mass 0.150 kg slides in a horizontal circular trajectory of radius 0.400 m at constant...

  • 3, A small block slides freely inside a frictionless circular bowl of radius r = 0.500...

    3, A small block slides freely inside a frictionless circular bowl of radius r = 0.500 m. When the block is in the position shown in the diagram. θ = 30.0° and it has a velocity v 2.00 m/s directed downward along the surface as shown. At the moment shown, (a) what is the magnitude of the radial component of acceleration of the bob? 3 pts (b) what is the magnitude of the tangential component of acceleration of the bob?...

  • 3. A small block slides freely inside a frictionless circular bowl of radius r = 0.500...

    3. A small block slides freely inside a frictionless circular bowl of radius r = 0.500 m. When the block is in the position shown in the diagra 30.0 and it has a velocity v 2.00 m/s directed downward along the surface as shown. At the moment shown (a) what is the magnitude of the radial component of acceleration of the bob? [3 pts] (b) what is the magnitude of the tangential component of acceleration of the bob? 4 pts]...

  • A small block with mass 0.0375 kg slides in a vertical circle of radius 0.600 m...

    A small block with mass 0.0375 kg slides in a vertical circle of radius 0.600 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 4.05 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...

  • Problem 3 A block of mass m slides down a frictionless incline. The block is released...

    Problem 3 A block of mass m slides down a frictionless incline. The block is released a height h above the bottom of the loop. The bottom of the loop is circular with radius R. a) What is the force of the track on the block at point A? Express your answer in terms of m, g, h, and R. b) What is the force of the track on the block at point B? Express your answer in terms of...

  • Problem 3 A block of mass m slides down a frictionless incline. The block is released...

    Problem 3 A block of mass m slides down a frictionless incline. The block is released a height h above the bottom of the loop. The bottom of the loop is circular with radius R. a) What is the force of the track on the block at point A? Express your answer in terms of m, g, h, and R. b) What is the force of the track on the block at point B? Express your answer in terms of...

  • A block of mass m slides down a frictionless incline. The block is released a height...

    A block of mass m slides down a frictionless incline. The block is released a height h above the bottom of the loop. The bottom of the loop is circular with radius R. a) What is the force of the track on the block at point A? Express your answer in terms of m, g, h, and R. b) What is the force of the track on the block at point B? Express your answer in terms of m, g,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT