Question

Problem 2 Lets consider a single-stream problem with a 28-cm diameter pipe where Refrigerant R-134a flows steadily at 200 kP
0 0
Add a comment Improve this question Transcribed image text
Answer #1

gokpa 10C S m mstea tata。 i S Ro c O.1139 -ラV G. 061S 6.003 (%

Add a comment
Know the answer?
Add Answer to:
Problem 2 Let's consider a single-stream problem with a 28-cm diameter pipe where Refrigerant R-134a flows...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air enters a 16-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5...

    Air enters a 16-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5 m/s. Air is heated as it flows, and it leaves the pipe at 180 kPa and 38°C. The gas constant of air is 0.287 kPa·m3/kg·K. Whats the volumetric flow rate of the inlet/outlet, mass flow rate and velocity & volume flow rate at the exit?

  • Refrigerant 134a enters a horizontal pipe operating at steady state at 50°C, 450 kPa and a...

    Refrigerant 134a enters a horizontal pipe operating at steady state at 50°C, 450 kPa and a velocity of 56.9 m/s. At the exit, the temperature is 60 °C and the pressure is 220 kPa. The pipe diameter is 0.03 m. Determine the rate of heat transfer between the pipe and its surroundings, in kW

  • Refrigerant 134a enters a turbine with a mass flow rate of 12 kg/s at 54°C, 3...

    Refrigerant 134a enters a turbine with a mass flow rate of 12 kg/s at 54°C, 3 MPa, while the velocity is negligible. The refrigerant expands in the turbine to a saturated vapor at 400 kPa where 10 percent of the steam is removed for some other use. The remainder of the refrigerant continues to expand to the turbine exit where the pressure is 5 kPa and quality is 75 percent. If the turbine is adiabatic, determine the rate of work...

  • Refrigerant 134a enters a compressor with a mass flow rate of 15 kg/s with a velocity...

    Refrigerant 134a enters a compressor with a mass flow rate of 15 kg/s with a velocity of 10 m/s. The refrigerant enters the compressor as a saturated vapor at 10°C and leaves the compressor at 1400 kPa with an enthalpy of 281.39 kJ/kg with a negligible velocity. The rate of work done on the refrigerant is measured to be 380 kW. If the elevation change between the compressor inlet and exit is negligible, determine the rate of heat transfer associated...

  • A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/...

    A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/kg and a mass flow rate of 0.1 kg/s. At the exit, the specific enthalpy is 1,531 kJ/kg. If there is no significant change in kinetic energy from inlet to exit, determine the rate of heat transfer between the pipe and its surroundings, in kW. B) Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 3.1 bar and a velocity of...

  • First part is really the important one Problem 1. Refrigerant-134a enters a compressor at 180 kPa...

    First part is really the important one Problem 1. Refrigerant-134a enters a compressor at 180 kPa as saturated vapor with a flow rate of 0.35 m/min and leaves at 700 kPa. The power supplied to the refrigerant during the compression process is 2.35 kW. Start from the general form of the energy equation and simplify it for this problem. Note: term. The final answer is an equation with no numbers. Calculate the temperature of R-134a at the exit of the...

  • Refrigerant-134a enters a diffuser as saturated vapor at 800kpa with a velocity of 120m/s, and leaves...

    Refrigerant-134a enters a diffuser as saturated vapor at 800kpa with a velocity of 120m/s, and leaves the device at 900kpa and 40^C. The R-134a is gaining energy by heat transfer at a rate of 2kW as it passes through the diffuser. If the exit area is 80% greater than the inlet area, determine the exit velocity m/s, and the mass flow rate kg/s.

  • 5. A pipe with a 2 cm diameter has R-134a flowing through it with an average...

    5. A pipe with a 2 cm diameter has R-134a flowing through it with an average velocity of 3 m/s. It is a saturated liquid at 6 bar. The pipe flows into a heating chamber, which has an exit pipe that is 4 cm in diameter. The R-134a in the exit pipe is a saturated vapor, still at 6 bar. What is the average velocity in the exit pipe, assuming the system is at steady state? Answer: Over 30 m/s....

  • Refrigerant 134a flows through an ideal vapor compression heat pump system with a heating capacity of...

    Refrigerant 134a flows through an ideal vapor compression heat pump system with a heating capacity of 60,000 Btu/hr. The condenser operates at 200 psi, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a saturated liquid at the condenser exit. The temperature at the compressor exit is 180°F. Assuming the compressor is not 100% isentropic, determine: a) Mass flow rate (lbm/min) b) Compressor power (hp) c) Isentropic compressor efficiency d) Coefficient of...

  • 5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves...

    5-30 Air enters an adiabatic nozzle steadily at 300 kPa, 200°C, and 30 m/s and leaves at 100 kPa and 180 m/s. The inlet area of the nozzle is 80 cm². Determine (a) the mass flow rate through the nozzle, (b) the exit temperature of the air, and (c) the exit area of the nozzle. Answers: (a) 0.5304 kg/s, (b) 184.6°C, (c) 38.7 cm P = 300 kPa T, = 200°C Vi = 30 m/s A = 80 cm AIR...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT