Question

Refrigerant 134a flows through an ideal vapor compression heat pump system with a heating capacity of 60,000 Btu/hr. The cond

0 0
Add a comment Improve this question Transcribed image text
Answer #1

rapour compression Refignation pump teat >> 3 Giveo!- ideal egcle » Is diagran Heat capacity Qua 60.000 BTU/hr = 16,6668 BTU/2 eb W-ICT 117.96236) 125.879 27 os » specific enthalphy at statez is hy:117.96236 BY zhme »due to 1-315 Peenthalphic +hrotlid) coefficient of performance Q23 copi zfcop: 4.528 >> coefficient of performance of pump 10000 2208.28 Wc canal teat.

Add a comment
Know the answer?
Add Answer to:
Refrigerant 134a flows through an ideal vapor compression heat pump system with a heating capacity of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at -10°C, and saturated liquid leaves the condenser at 28°C. The mass flow rate of refrigerant is 5 kg/min. Determine (a) The compressor power, in kW (b) The refrigerating capacity, in tons. (c) The coefficient of performance. Sketch the system on a T-s diagram with full label. A vapor-compression heat pump with a heating capacity of 500 kJ/min is...

  • A vapor compression refrigeration system operates at steady state with refrigerant 134a as the working fluid....

    A vapor compression refrigeration system operates at steady state with refrigerant 134a as the working fluid. Superheated vapor enters the compressor at 10 lbf/in2 , 0 oF. The liquid leaving the condenser is at 180 lbf/in2 , 100 oF. There is no significant pressure drop in the evaporator or condenser. For compressor efficiency of 83% and refrigeration capacity of 6 tons, determine (a) the compressor power input in horsepower, and (b) the coefficient of performance. A vapor compression refrigeration system...

  • QUESTION 3 A heat pump that operates on the ideal vapor compression cycle with refrigerant-134a is...

    QUESTION 3 A heat pump that operates on the ideal vapor compression cycle with refrigerant-134a is used to heat water from 15°C to 45°C at a rate of 0.12 kg/s. the condenser and evaporator pressures are 1.4 and 0.32 MPa, respectively Determine: (a) The power input to the heat pump QUESTION 3 A heat pump that operates on the ideal vapor compression cycle with refrigerant-134a is used to heat water from 15°C to 45°C at a rate of 0.12 kg/s....

  • A vapor-compression heat pump system uses Refrigerant R-134a as the working fluid. The refrigerant enters the...

    A vapor-compression heat pump system uses Refrigerant R-134a as the working fluid. The refrigerant enters the compressor at 2.0bar, -5degC and with a mass-flow rate of 26g/s. Compression is adiabatic to 11.6bar, 60degC and the refrigerant exits the condenser 8degC sub-cooled. a) Draw a P-h chart to visualise the refrigeration cycle and display known data. b) Determine the power input to the compressor in kW c) Determine the heating capacity of the system in kW d) Determine the coefficient of...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34°C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat transfer...

  • Problem I: Not applicable for 2017 Problem II: In an R-134a vapor-compression home heat pump, R-134A...

    Problem I: Not applicable for 2017 Problem II: In an R-134a vapor-compression home heat pump, R-134A enters the compressor (75% isentropic efficiency) as a saturated vapor at 200 kPa and leaves at 800 kPa. The refrigerant goes through a constant pressure condenser and leaves as a saturated liquid. The refrigerant then goes through an adiabatic expansion valve enters the evaporator as a liquid-vapor mixture. The mass flow rate of refrigerant is 0.1 kg/s. and Cod A. Write the equation for...

  • In a heat pump operating according to the vapor compression refrigeration cycle, the refrigerant is R-134a....

    In a heat pump operating according to the vapor compression refrigeration cycle, the refrigerant is R-134a. A water source of 11 °C is used to heat a house with a heating load of 17 kW. Refrigerant enters the compressor as saturated steam at 100 kPa pressure and rises at 1.6 MPa, 60 ° C. The temperature of the refrigerant at the outlet of the condenser is 30°C. a) The amount of heat at the beginning of the water, b) Compressor...

  • A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid....

    A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid. The system operates the evaporator at 0.4 MPa, the condenser at 1.6 MPa, and the separator at 0.8 MPa. The compressors use 25 kW of power. Given that the refrigerant is saturated liquid at the inlet of each expansion valve and saturated vapor at the inlet of each compressor, and the compressors are isentropic: (0) show the process on a T-s diagram; ) calculate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT