Question

In a heat pump operating according to the vapor compression refrigeration cycle, the refrigerant is R-134a. A water source of
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given! A heat pump operating to the vapour compression refrigeration cycle. 1 3 4 Compressor inler condition is saturated Ste

Add a comment
Know the answer?
Add Answer to:
In a heat pump operating according to the vapor compression refrigeration cycle, the refrigerant is R-134a....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34 °C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat...

  • In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating...

    In a vapor-compression refrigeration heat pump cycle with Refrigerant 134a as the working fluid provides heating at a rate of 15 kW to maintain a building at 20 °C year-round. During the heating mode in the winter, the outside temperature is 5 °C. It is also used for cooling in the summer when outside temperature is 34°C. Saturated vapor at 2.4 bar leaves the evaporator and superheated vapor at 8 bar leaves the compressor. There is no significant heat transfer...

  • A vapor-compression heat pump system uses Refrigerant R-134a as the working fluid. The refrigerant enters the...

    A vapor-compression heat pump system uses Refrigerant R-134a as the working fluid. The refrigerant enters the compressor at 2.0bar, -5degC and with a mass-flow rate of 26g/s. Compression is adiabatic to 11.6bar, 60degC and the refrigerant exits the condenser 8degC sub-cooled. a) Draw a P-h chart to visualise the refrigeration cycle and display known data. b) Determine the power input to the compressor in kW c) Determine the heating capacity of the system in kW d) Determine the coefficient of...

  • A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid....

    A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid. The system operates the evaporator at 0.4 MPa, the condenser at 1.6 MPa, and the separator at 0.8 MPa. The compressors use 25 kW of power. Given that the refrigerant is saturated liquid at the inlet of each expansion valve and saturated vapor at the inlet of each compressor, and the compressors are isentropic: (0) show the process on a T-s diagram; ) calculate...

  • An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid....

    An ideal vapor-compression refrigerant cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at -10°C, and saturated liquid leaves the condenser at 28°C. The mass flow rate of refrigerant is 5 kg/min. Determine (a) The compressor power, in kW (b) The refrigerating capacity, in tons. (c) The coefficient of performance. Sketch the system on a T-s diagram with full label. A vapor-compression heat pump with a heating capacity of 500 kJ/min is...

  • A heat pump operates on the ideal vapor compression refrigeration cycle with R-134a. The condenser pressure...

    A heat pump operates on the ideal vapor compression refrigeration cycle with R-134a. The condenser pressure is 1.2 MPa and the specific enthalpy at the inlet to condenser is 279 kJ/kg. If the mass flow rate of the refrigerant is 0.193 kg/s, the rate of heat supply to the heated space is answer is 31.1 kw

  • Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as...

    Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as shown. Refrigerant 134a leaves the evaporator as saturated vapor at 0.10 MPa and is heated at constant pressure to 20°C before entering the compressor. Following isentropic compression to 1.4 MPa, the refrigerant passes through the condenser and exits at 45°C and 1.4 MPa. The liquid then passes through the heat exchanger and enters the expansion valve at 1.4 MPa. The mass flow rate of...

  • Thermodynamics. No interpolation needed. Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle....

    Thermodynamics. No interpolation needed. Problem #3. Refrigerant 134a is the working fluid for vapor-compression refrigeration cycle. The evaporator temperature is 8°C and the condenser pressure is 12 bar. Saturated vapor enters the compressor and superheated vapor enters the condenser at 60°C and exits the condenser as saturated liquid. For a refrigeration capacity of 8 tons or 2.816 x104 J/s determine the following: (1) The refrigerant mass flow rate in kg/s; (2) The compressor isentropic efficiency [Hint: Interpolation is required); (3)...

  • Refrigerant 134a flows through an ideal vapor compression heat pump system with a heating capacity of...

    Refrigerant 134a flows through an ideal vapor compression heat pump system with a heating capacity of 60,000 Btu/hr. The condenser operates at 200 psi, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a saturated liquid at the condenser exit. The temperature at the compressor exit is 180°F. Assuming the compressor is not 100% isentropic, determine: a) Mass flow rate (lbm/min) b) Compressor power (hp) c) Isentropic compressor efficiency d) Coefficient of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT