Question

A circular wire loop of radius r = 11 cm is immersed in a uniform magnetic...

A circular wire loop of radius r = 11 cm is immersed in a uniform magnetic field B = 0.645 T with its plane normal to the direction of the field. If the field magnitude then decreases at a constant rate of −1.5×10−2 T/s , at what rate should r increase so that the induced emf within the loop is zero?

Express your answer using two significant figures.

The answer is not 0.00128

0 0
Add a comment Improve this question Transcribed image text
Answer #1

%adiur tcm 0-1m 0.645T - 1510T/S flar Maghahe BA hanugh loop A TT emf Enct PP given End B. stn +A SB + A S B . B. dit - (0-11

Add a comment
Know the answer?
Add Answer to:
A circular wire loop of radius r = 11 cm is immersed in a uniform magnetic...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • os A circular loop of wire of radius 1.55cm is in a uniform magnetic field, with...

    os A circular loop of wire of radius 1.55cm is in a uniform magnetic field, with the plane of the loop perpendicular to the direction of the field. The magnetic field varies with time according to B(t) = 0.064 + 1.2t, where t is in seconds, and B is in T. Calculate the magnetic flux through the loop at t0 s. B Submit Answer Tries 0/10 Calculate the magnitude of the emf induced in the loop. Submit Answer Tries 0/10...

  • A circular loop of wire of radius 11.5 cm is placed in a magnetic field directed...

    A circular loop of wire of radius 11.5 cm is placed in a magnetic field directed perpendicular to the plane of the loop as shown in the figure below. If the field decreases at the rate of 0.043 0 T/s in some time interval, find the magnitude of the emf induced in the loop during this interval.

  • Problem 1 (20 points] A circular loop of wire with radius r = 10 cm and...

    Problem 1 (20 points] A circular loop of wire with radius r = 10 cm and Resistance R = 1 N is * in a region of uniform magnetic field, as shown in the figure. The magnetic field is directed into the plane. At t = 0s, the magnetic field * * is zero. Then, the magnetic field starts to increase as function of time, B(t) = 0.5t? * * * X X a) [5 points) is the magnetic flux...

  • A circular loop of wire of radius 11 cm moves at a speed of 8.6 m/s...

    A circular loop of wire of radius 11 cm moves at a speed of 8.6 m/s in the direction of a 0.17 T uniform magnetic field, perpendicular to the plane of the loop. What is the emf induced in the loop?

  • A circular loop of flexible iron wire has an initial circumference of 160 cm, but its...

    A circular loop of flexible iron wire has an initial circumference of 160 cm, but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 0.500 T, which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf epsilon...

  • A magnetic field of magnitude 1.42 T is perpendicular to the plane of a circular wire loop. As th...

    A magnetic field of magnitude 1.42 T is perpendicular to the plane of a circular wire loop. As the magnetic field decreases to zero in a time of 0.0314 s, the average induced emf is 0.284 V. What is the radius of the loop?

  • A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field...

    A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.177 s , the magnetic field strength increases from 53.1 mT to 96.9 mT . Find the magnitude of the average emf avg induced in the coil during this time interval, in millivolts. A 141 turn circular coil of radius 2.61 cm is immersed in a uniform magnetic field that is...

  • A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...

    A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.850 T with the plane of the coil perpendicular to the magnetic field as shown. ! The magnetic field decreases to 0.300 T in a time interval of 25.0 ms. What is the average induced emf in the loop during this interval?

  • 1) A 179‑turn circular coil of radius 3.55 cm and negligible resistance is immersed in a...

    1) A 179‑turn circular coil of radius 3.55 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 13.7 Ω resistor to create a closed circuit. During a time interval of 0.121 s, the magnetic field strength decreases uniformly from 0.643 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy: mJ 2) You decide...

  • A circular conducting loop with radius 3.50 cm is placed in a uniform magnetic field of...

    A circular conducting loop with radius 3.50 cm is placed in a uniform magnetic field of 0.650 T with the plane of the coil perpendicular to the magnetic field as shown. в Axis The magnetic field decreases to 0.440 T in a time interval of 32.0 ms. What is the average induced emf in the loop during this interval? mV

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT