Question

Q211 A steel beam has Z-bar cross section as shown in below. Here O is the centroid of the cross section Moment of inertia and product of inertia of the cross section are given by I, = 24.3960(10° ) mm. l, = 67.41 10(10° ) mm. 1,--30.1840(10° ) mm. The internal force developed in the cross section is M 12 kN-m as shown. Determine the location and magnitude of the maximum tensile stress and maximum compressive stress in the cross section. 110 37.6667 Unit: mm 20 20 100 4 32.6667 20 240

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Q211 A steel beam has Z-bar cross section as shown in below. Here O is the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in the figure below...

    1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in the figure below. a. State the distance of the centroid from the 2 axis. b. Calculate the area moment of inertia about the centroid. c. Calculate the maximum stress in the beam 300 mm 20 mm 185 mm 20 mm 35 mm 1. A beam has a max moment of 45 kN-m. The cross section of the beam is shown in...

  • 60 mm A 2 m long cantilever beam with an asymmetric cross-section is subjected to a...

    60 mm A 2 m long cantilever beam with an asymmetric cross-section is subjected to a tip load of 3 kN, as shown. The y- and z-axes pass through the centroid of the cross-section. (a) Show that moments of inertia for the cross-section are 1.33x106 mm4, Iy - 0.917x106 mm4 and Iy-0.03x106 mm4, (b) Find the inclination of the neutral axis and (c) Find the magnitude and location of maximum tensile and compressive stresses in the C.S 10 0° -28...

  • Question 3: Two vertical forces are applied to a beam of the cross-section shown with a...

    Question 3: Two vertical forces are applied to a beam of the cross-section shown with a uniform thickness of 10 mm. Determine the maximum tensile and compressive stresses at point G located 0.5 m from point A of the beam. Follow the steps below. 60 kN 60 KN Beam Cross-Section 120 mm A Bc 200 mm 1.5m - 1m 1m Step 1-FBD, SFD and BMD diagrams for the beam. Step 2 - Magnitude of moment at point G (located at...

  • 1. A cross section of a RC beam is described in a below figure. Three No....

    1. A cross section of a RC beam is described in a below figure. Three No. 29 reinforcing bars are located at the bottom of the section. The area of a #29 reinforcing bar is 645 mm2 while the yield strength of the steel bar is 420 MPa. The tensile strength of concrete is 2.7 MPa, and the compressive strength of concrete is 21 MPa. In addition, n= E/Eis selected as 8. (1) Compute the maximum compressive and tensile stresses...

  • A wood beam (1) is reinforced on its lower surface by a steel plate (2) as...

    A wood beam (1) is reinforced on its lower surface by a steel plate (2) as shown in the figure. Dimensions of the cross section are b 1 = 220 mm , d = 385 mm , b 2 = 190 mm , and t = 25 mm . The elastic moduli of the wood and steel are E 1 = 12.5 GPa and E 2 = 200 GPa , respectively. The allowable bending stresses of the wood and steel...

  • 4. (30%) For a beam with a T-section as shown, the cross-sectional dimensions of 12 mm....

    4. (30%) For a beam with a T-section as shown, the cross-sectional dimensions of 12 mm. The centroid is 75 mm, h = 90 mm, t the beam are b 60 mm, h, at C and c 30 mm. At a certain section of the beam, the bending moment is M 5.4 kN m and the vertical shear force is V= 30 kN. (a) Show that the moment of inertia of the cross-section about the z axis (the neutral axis)...

  • I-beam loaded as a cantilever beam 2. An I-beam is loaded as a cantilever beam as shown below. The cross-section of the...

    I-beam loaded as a cantilever beam 2. An I-beam is loaded as a cantilever beam as shown below. The cross-section of the beam is also shown. Indicate on both illustrations, by circling and labeling, the location of the maximum tensile stress and the maximum compressive stress. 2. An I-beam is loaded as a cantilever beam as shown below. The cross-section of the beam is also shown. Indicate on both illustrations, by circling and labeling, the location of the maximum tensile...

  • 4. A T-shaped cross-sectional beam is loaded as shown in the figure. Determine the following a....

    4. A T-shaped cross-sectional beam is loaded as shown in the figure. Determine the following a. Sketch the internal shear force and bending moment diagrams for the beam. b. Calculate the maximum magnitude of the bending stress. Indicate where this occurs on the cross-section and along the length of the beam. c. Calculate the transverse shearing stress at the centroid of the cross-section using the maximum magnitude of the transverse shear force. - 200 mm 8 KN 1.5 kN/m 20...

  • 3. The beam, with symmetric cross-section about y (all thicknesses of 1 in) as shown, is...

    3. The beam, with symmetric cross-section about y (all thicknesses of 1 in) as shown, is subjected to an internal moment of M 480 kip.in and a shear force of V 340 kip. For this system, a) determine the location of the neutral axis, y (measured from the bottom of cross-section as shown) and the area moment of inertia, I about the neutral axis (NA or z-axis), the maximum compressive, (o,nax), and tensile, (Omax): normal stresses, and b) o kip....

  • The beam has the cross-sectional area shown. If the loading intensity o 25 kN/m and the...

    The beam has the cross-sectional area shown. If the loading intensity o 25 kN/m and the length of the beam L is 3 m, answer the questions that follow: 0 TALALRATEATAITTAAAAATTAAAAAL 100 mm 25 mm 25 mm 75 mm 75 mm 25 mm Determine the maximumm bending moment in the bearm in [kNm] Determine the position of the neutral axis, as a distance in [mm] measured from the bottom of the beam i.e. determine V Determine the area moment of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT