Question

Block B has a mass of 3.60kg and is moving to the left at a speed...

Block B has a mass of 3.60kg and is moving to the left at a speed of 3.80m/s. Block A has a mass of 7.20kg and is moving to the right. The two blocks undergo a perfectly inelastic collision. What should be the velocity of Block A in order to have the two blocks remain at rest after the collision?

0 0
Add a comment Improve this question Transcribed image text
Answer #1


m1 = 3.6 kg, u1 = -3.8 m/s, m2 = 7.2 kg, v = 0

for inelastic collision

from conservaiton of momentum

m1u1 +m2u2 = (m1+m2)v

3.6*-3.8 +7.2*u2 = (3.6+7.2)*0

u2 = 1.9 m/s

Add a comment
Know the answer?
Add Answer to:
Block B has a mass of 3.60kg and is moving to the left at a speed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Block B has a mass of 2.40kg and is moving to the left at a speed...

    Block B has a mass of 2.40kg and is moving to the left at a speed of 3.70m/s. Block A has a mass of 4.50kg and is moving to the right. The two blocks undergo a perfectly inelastic collision. What should the velocity of the Block A be in order to have the two blocks move to the left with a speed of 0.64 m/s after the collision?

  • Block B has a mass of 3.80kg and is moving to the left at a speed...

    Block B has a mass of 3.80kg and is moving to the left at a speed of 2.20m/s. Block A has a mass of 3.00kg and is moving to the right. The two blocks undergo a perfectly inelastic collision. What should the velocity of the Block A be in order to have the two blocks move to the left with a speed of 0.37 m/s after the collision?

  • A block of mass m1 = 1.0 kg initially moving to the right with a speed...

    A block of mass m1 = 1.0 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 3.4 kg initially moving to the left with a speed of 2.6 m/s as shown in figure (a). The spring constant is 530N/m. (A) Find the velocities of the two blocks after the collision. (B) During the collision, at the instant block 1...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m=7.6kg, moving on a frictionless surface with speed vi= 7.6m/s, makes a...

    A block of mass m=7.6kg, moving on a frictionless surface with speed vi= 7.6m/s, makes a perfectly elastic collision witha block of mass M at rest. After the collision, the 7.6 kg block recoils with a speed of vf=2.5m/s. In the figure, the blocks are in contact for 0.20 s. The average force on the 7.6 kg block, while the two blocks are in contact, is the closest to: 241N, 194N, 289N, 336N, 384N

  • A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely...

    A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely inelastic collision with a stationary block of mass m2 = 0.300 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3.(Figure 1) Assume that the blocks slide without...

  • 3. A block of mass m = 6.2 kg, moving on a frictionless surface with a...

    3. A block of mass m = 6.2 kg, moving on a frictionless surface with a velocity of -6.5 m/s to the right, collides with a block of mass M at rest, as shown in the figure. After the collision, the 6.2-Kg block recoils with a velocity of f =0.70 m/s to the left. If the blocks are in contact for 0.30 s, what is the magnitude of the average force on the 6.2-kg block, while the two blocks are...

  • A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a...

    A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a speed 4.20 m/s, makes a perfectly elastic collision with a block of mass M at rest. After the collision, the 8.40 kg block recoils with a speed of 0.400 m/s. In the figure, the blocks are in contact for 0.200 s. What is the magnitude of the average force on the 8.40 kg block, while the two blocks are in contact?

  • A block of mass m1 = 1.60kg moving at v1 = 2.00m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.100kg

    A block of mass m1 = 1.60kg moving at v1 = 2.00m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.100kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of massm3 = 2.70kg , which is initially at rest. The three blocks then move, stuck together, with speed v3.(Figure 1) Assume that the blocks slide without friction.Part AFind v2v1, the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT